张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

基于无人机的向下平面人群密度估计的几何和物理约束
https://arxiv.org/abs/1803.08805

Weizhe Liu, Krzysztof Lis, Mathieu Salzmann, Pascal Fua

Abstract—State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density in the image plane. While useful for this purpose, this imageplane density has no immediate physical meaning because it is subject to perspective distortion. This is a concern in sequences acquired by drones because the viewpoint changes often. This distortion is usually handled implicitly by either learning scaleinvariant features or estimating density in patches of different sizes, neither of which accounts for the fact that scale changes must be consistent over the whole scene.

In this paper, we explicitly model the scale changes and reason in terms of people per square-meter. We show that feeding the perspective model to the network allows us to enforce global scale consistency and that this model can be obtained on the fly from the drone sensors. In addition, it also enables us to enforce physically-inspired temporal consistency constraints that do not have to be learned. This yields an algorithm that outperforms state-of-the-art methods in inferring crowd density from a moving drone camera especially when perspective effects are strong.

在拥挤场景中对人进行计数的最新方法依赖于深层网络来估计图像平面中的人群密度。尽管对于此目的很有用,但此像平面密度没有直接的物理意义,因为它会受到透视变形的影响。这是无人机获取序列中的一个问题,因为视点经常变化。 通常通过学习尺度不变特征或估计不同大小的面片中的密度来隐式处理这种失真,这两者都不能说明在整个场景中尺度变化必须一致的事实。

在本文中,我们以人均每平方米为单位对规模变化和原因进行显式建模。我们表明,将透视图模型馈送到网络可以使我们增强全局范围的一致性,并且可以从无人机传感器上以飞行的形式获得此模型。此外,它还使我们能够执行不必学习的,受到物理启发的时间一致性约束。 这产生了一种算法,该算法在从移动的无人机摄像机推断人群密度方面表现出超过最新方法,尤其是在透视效果很强的情况下。

泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation的更多相关文章

  1. 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

    Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...

  2. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  3. 泡泡一分钟:Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions

    张宁 Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation ...

  4. 泡泡一分钟:Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping

    张宁  Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping链接:https://pan.ba ...

  5. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

  6. 泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes

    张宁    SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes    "链接:https://pan.ba ...

  7. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  8. 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU

    Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...

  9. 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...

随机推荐

  1. 记python 使用腾讯ocr 识别代码报错 CERTIFICATE_VERIFY_FAILED

    腾讯提供的demo测试通过  写入到代码出现 ClientNetworkError? [TencentCloudSDKException] code:ClientNetworkError messag ...

  2. Httpd服务入门知识-Httpd服务常见配置案例之ServerSignature指令选项

    Httpd服务入门知识-Httpd服务常见配置案例之ServerSignature指令选项 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.ServerSignature指令概述 ...

  3. PAT 乙级 1012.数字分类 C++/Java

    题目来源 给定一系列正整数,请按要求对数字进行分类,并输出以下 5 个数字: A​1​​ = 能被 5 整除的数字中所有偶数的和: A​2​​ = 将被 5 除后余 1 的数字按给出顺序进行交错求和, ...

  4. 201671030106 何启芝 实验十四 团队项目评审&课程学习总结

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十四 团队项目评审&课程学习总结 课程学习目 ...

  5. Elasticsearch 索引文档如何使用自动生成 Id?

    一个文档的 _index . _type 和 _id 唯一标识一个文档. 我们可以提供自定义的 _id 值,或者让 index API 自动生成. 如果你的数据没有自然的 ID, Elasticsea ...

  6. Codechef Palindromeness 和 SHOI2011 双倍回文

    Palindromeness Let us define the palindromeness of a string in the following way: If the string is n ...

  7. Q-learning之一维世界的简单寻宝

    Q-learning的算法: (1)先初始化一个Q table,Q table的行数是state的个数,列数是action的个数. (2)先随机选择一个作为初始状态S1,根据一些策略选择此状态下的动作 ...

  8. Properties 取值和设置函数 Hashtable的静态内部类Entry的结构和克隆方法

  9. SSH框架学习中遇到的问题

    在web.xml中配置struts2过滤器时,struts2 2.5之前的版本有ng,而2.5之后没有ng,如图 还有要注意web.xml的版本约束,之前一直遇到问题,后来在网上才发现原来时web的版 ...

  10. 电商平台+keepalived高可用

    192.168.189.131 电商平台 192.168.189.129 MySQL主192.168.189.130 MySQL备192.168.189.181 VIP 配置MySQL为互为主从并结合 ...