Yarn-cluster VS Yarn-client

  从广义上讲,yarn-cluster适用于生产环境;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出。

  在我们介绍yarn-cluster和yarn-client的深层次的区别之前,我们先明白一个概念:Application Master。在YARN中,每个Application实例都有一个Application Master进程,它是Application启动的第一个容器。它负责和ResourceManager打交道,并请求资源。获取资源之后告诉NodeManager为其启动container。

  从深层次的含义讲,yarn-cluster和yarn-client模式的区别其实就是Application Master进程的区别,yarn-cluster模式下,driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行。然而yarn-cluster模式不适合运行交互类型的作业。而yarn-client模式下,Application Master仅仅向YARN请求executor,client会和请求的container通信来调度他们工作,也就是说Client不能离开。

Yarn-cluster:

Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。因为Driver程序在YARN中运行,所以事先不用启动Spark Master/Client,应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况。

步骤如下:

1. 由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a). 连接到RM
b). 从RM ASM(ApplicationsManager )中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d). 设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动Spark App Master,并向ResourceManager AsM注册
4. Spark ApplicationMaster从HDFS中找到jar文件,启动DAGscheduler和YARN Cluster Scheduler
5. ResourceManager向ResourceManager AsM注册申请container资源(INFO YarnClientImpl: Submitted application)
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
需要注意的是:
a). Spark中的localdir会被yarn.nodemanager.local-dirs替换
b). 允许失败的节点数(spark.yarn.max.worker.failures)为executor数量的两倍数量,最小为3.
c). SPARK_YARN_USER_ENV传递给spark进程的环境变量
d). 传递给app的参数应该通过–args指定。
 
Yarn-client:
(YarnClientClusterScheduler)查看对应类的文件
在yarn-client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。

 配置YARN-Client模式同样需要HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR变量。
参考文章如下:
1.http://www.aboutyun.com/thread-12294-1-1.html
2.http://www.cnblogs.com/MOBIN/p/5857314.html
3.https://www.iteblog.com/archives/1223.html

yarn cluster和yarn client模式区别——yarn-cluster适用于生产环境,结果存HDFS;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出的更多相关文章

  1. spark on yarn,client模式时,执行spark-submit命令后命令行日志和YARN AM日志

    [root@linux-node1 bin]# ./spark-submit \> --class com.kou.List2Hive \> --master yarn \> --d ...

  2. Spark On Yarn Cluster生产环境下JVM的OOM和Stack Overflow问题

    1.Spark on Yarn下JVM的OOM问题及解决方式 2.Spark中Driver的Stack Overflow的问题及解决方式 Spark on Yarn cluster mode: 此时有 ...

  3. Spark代码中设置appName在client模式和cluster模式中不一样问题

    问题 Spark应用名在使用yarn-cluster模式提交时不生效,在使用yarn-client模式提交时生效,如图1所示,第一个应用是使用yarn-client模式提交的,正确显示我们代码里设置的 ...

  4. spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)

    不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPA ...

  5. spark on yarn,cluster模式时,执行spark-submit命令后命令行日志和YARN AM日志

    [root@linux-node1 bin]# ./spark-submit \> --class com.kou.List2Hive \> --master yarn \> --d ...

  6. Spark On Yarn搭建及各运行模式说明

    之前记录Yarn:Hadoop2.0之YARN组件,这次使用Docker搭建Spark On  Yarn 一.各运行模式 1.单机模式 该模式被称为Local[N]模式,是用单机的多个线程来模拟Spa ...

  7. Spark on YARN的两种运行模式

    Spark on YARN有两种运行模式,如下 1.yarn-cluster:适合于生产环境.        Spark的Driver运行在ApplicationMaster中,它负责向YARN Re ...

  8. spark基于yarn的两种提交模式

    一.spark的三种提交模式 1.第一种,Spark内核架构,即standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,基于YARN的yarn-cluster模式. ...

  9. Spark剖析-宽依赖与窄依赖、基于yarn的两种提交模式、sparkcontext原理剖析

    Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2. ...

随机推荐

  1. 【SSH进阶之路】Spring的AOP逐层深入——AOP的基本原理(六)

    经过我们对Spring的IOC不断的深入学习,Spring的面貌逐渐变得清晰,我们对Spring的了解也更加的深入.从这篇博文开始我们学习Spring的第二大核心内容:AOP. 什么是AOP AOP( ...

  2. RAID磁盘阵列结构

    RAID磁盘阵列结构原理其实很简单,就是每块硬盘不插在主板的硬盘接口上了,而是全插在RAID卡上,然后RAID卡再插到主板上,由RAID卡统一管理硬盘,做各种RAID磁盘策略(RAID0,RAID1, ...

  3. Go语言中的值类型和引用类型

    一.值类型和引用类型值类型:int.float.bool和string这些类型都属于值类型,使用这些类型的变量直接指向存在内存中的值,值类型的变量的值存储在栈中.当使用等号=将一个变量的值赋给另一个变 ...

  4. [转帖]IBM报告:多国央行考虑发行数字货币 最快5年内问世

    IBM报告:多国央行考虑发行数字货币 最快5年内问世 https://news.cnblogs.com/n/646001/ DCEP 中国央行可能是第一家发布 数字货币的央行 DCEP 是基于 UTX ...

  5. Nvidia Jetson TX2开发板学习历程(1)- 详细开箱、上电过程

    考试周已经结束了,开发板也已经到了.希望借着这个假期能够好好的利用这块开发板学习Linux系统以及Tensorflow的相关知识. 我打算将学习历程通过博客的方式写出来,作为自己的笔记,也可以供以后拿 ...

  6. docker (二):容器container

    docker使用入门(二):容器container docker层次结构可以分为三层,从下往上是:容器(container).服务(services).堆栈(stack),其中services定义了容 ...

  7. U盘改造计划之PE、kali、U盘三合一

    最强U盘攻略之一 前一段时间朋友买电脑问了我一些问题,我突然发现U盘怎么这么便宜,128G金士顿,140?!!!我16年买的可是240啊.买贵一百块,我好方啊.但是我的U盘,我是不会屈服做一个普通的U ...

  8. SQL Server中,常用的全局变量

    在SQL Server中,全局变量是一种特殊类型的变量,服务器将维护这些变量的值.全局变量以@@前缀开头,不必进行声明,它们属于系统定义的函数.下表就是SQL Server中一些常用的全局变量. 全局 ...

  9. Python之TensorFlow的变量收集、自定义命令参数、矩阵运算、梯度下降-4

    一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python ...

  10. Socket HttpListen

    HttpListener sSocket = new HttpListener(); sSocket.Prefixes.Add("http://127.0.0.1:8080/"); ...