TPC-C解析系列03_TPC-C基准测试之SQL优化

http://www.itpub.net/2019/10/08/3330/

TPC-C是一个非常严苛的基准测试模型,考验的是一个完备的关系数据库系统全链路的能力。这也是为什么在TPC-C的榜单前列,出现的永远只是大家熟知的那几家在业界有着几十年积累、从关系数据库理论开始发展就差不多同步出现的数据库公司。接下来我们通过这篇文章为您分析在TPC-C测试中OceanBase数据库的SQL模块具体遇到了哪些挑战、做出了哪些优化。

背景

对TPC-C有所了解人都知道,TPC-C是一个典型的OLTP (On-Line Transaction Processing) 场景测试,考察的是数据库在高并发压力场景下的事务处理能力,最终的性能指标以tpmC(transaction per minute,也即每分钟系统处理TPC-C模型中的new order事务的数量)和平均到每tpmC的系统成本作为衡量标准。在OLTP场景中,每条请求的响应时间都是极短的。因此,各个数据库厂商在进行TPC-C测试时,都会尽一切可能将每一个操作时间压缩到最短,不夸张的说,在TPC-C的测试中,一些关键操作的优化往往需要细化到CPU指令级。

在进入我们的主题前,我们先来谈谈TPC-C中的事务模型,主要分为五种事务,订单创建、订单支付、订单查询、订单发货以及库存查询,这五种事务按照一定的比例发生,测试最终衡量的是每分钟订单创建事务的执行个数。大家知道,每一个数据库的事务,其实就是由一定逻辑关系关联的若干条SQL语句组成,他们在一个事务中,要么全部成功,要么全部失败,这个在数据库中称为“原子性”,也就是ACID中的“A”。那么TPC-C中的一个事务的耗时大约是多久呢?看一下报告就很清楚了——只有十几个毫秒。考虑到一个事务由多条SQL构成,那么每一条SQL的平均耗时都不到1毫秒!

在C/S(client-server)模型有中,一条SQL语句从发起到执行完成需要经历从客户端输入、网络传输、SQL优化、执行、结果返回到客户端这样一个流程。而具体每一条SQL的执行可能只是做一个字段的更新,所需要的执行时间是非常短暂的,从整个链路的角度来看,大量的时间会花费在与客户端的交互过程中,造成资源的浪费和耗时的增加。那么如何解决这个问题的呢?答案就是使用存储过程。

存储过程

所谓“存储过程”就是数据库为用户提供的一种面向过程的编程语言。基于这种语言,用户可以将应用程序的逻辑封装为一个可调用的过程(procedure)存放在数据库中并随时进行调用。通过这种方式,用户可以将本来需要与数据库进行多次交互才能完成的工作通过一次交互完成,省去了中间网络的传输和等待时间(参见图1)。假如一条事务的网络开销平均是30%,也就是说30%的CPU都花在了网络的收发和解析上。那么在6千万规模tpmC测试中节省下来30%的CPU资源换算成系统处理能力是惊人的。使用存储过程还可以带来事务响应时间的下降,导致数据库内核中事务锁的临界区缩短,间接的提升了系统CPU利用率,整个吞吐量也随之提高。存储过程在缩短应用端的等待耗时上同样有很大作用。

 

在TPC-C中,存储过程对于整个系统的执行效率提升是至关重要的。OceanBase 的2.2版本不仅全面支持了存储过程,而且对存储过程的执行效率做了大量极致的优化。

编译执行

存储过程作为一种面向过程的高级语言,需要转换成机器码才能够执行。这个过程一般可以分为“编译执行”和“解释执行”两种,一般来说,编译执行相比解释执行有代码优化充分、执行效率高等特点。OceanBase利用近两年逐渐成熟的LLVM编译器框架实现了一个支持存储过程的编译器,通过动态编译(Just-in-Time Compilation)的方式将存储过程翻译成高效的二进制可执行代码,在执行效率上获得了数量级的提升。同时,过程中LLVM框架将存储过程转换为与机器无关的中间代码,使得存储过程也自然而然地获得了跨平台的编译执行能力,LLVM内置的优化过程确保我们在各种不同的硬件平台上都可以获得正确、高效的可执行代码。

Array Binding

另外一个在TPC-C测试中发挥了重要作用的功能就是对DML语句进行批量处理的能力,在Oracle中该功能也称为“Array Binding”。一条SQL在数据库中的执行过程大致上可以分为“计划生成”和“执行”两个阶段。尽管我们对SQL的执行计划做了高速缓存,但找到一个合适的执行计划在整个执行过程中仍然是比较耗时的一个部分。那有没有办法省去这个时间呢?当一组SQL的执行计划完全一样而只有执行参数不同时,在存储过程中我们可以通过特定的语法将他们的执行做成一个批量处理的过程,此时“计划生成”只需要做一次即可,这就是所谓的“Array Binding”。

在Array Binding中,数据库会首先找到需要使用的计划,然后执行该计划,并在每次执行完毕后,重新执行参数绑定(binding)的过程。打个比方,这就像是在一个C语言的for循环中,反复赋值而不是重新定义一个数据结构。Array Binding的使用受用户控制,需要在存储过程中使用FORALL关键字来触发这一功能,在TPC-C的测试过程中,我们多次使用了Array Binding来提升系统的处理能力,效果非常明显。

Prepared Statement与执行计划缓存

Prepared Statement是一种二进制的请求交互协议,可以大大降低系统的交互成本。OceanBase不仅支持用户程序与数据库间使用Prepared Statement, 也支持在存储过程引擎调用SQL引擎执行时使用这种交互方式。存储过程在对SQL进行一次Prepare操作并获取唯一id后, 后续的每次执行仅需要传入该id和对应的参数,系统可以通过高速缓存找到对应的存储过程或SQL计划开始执行。该过程相比使用SQL文本的交互方式,省去了大量请求文本解析的CPU开销。

OceanBase内部实现了高速缓存来缓存存储过程的可执行代码及SQL执行计划, 不同参数的存储过程和SQL可以通过这一高速缓存快速获取需要的执行对象, 耗时一般在几十微秒以内, 有效避免了重新编译带来的毫秒级的延迟和CPU消耗。

可更新视图

在OLTP场景中,通过减少应用与数据库的交互次数来实现性能提升的例子很多,可更新视图就是其中之一。我们常见的数据库视图通常是只读的,通过定义视图,用户可以定义自己感兴趣的数据以及其获取接口,但视图同时也可以作为更新操作的入口,比如在TPC-C的new order创建场景中,应用需要得到商品信息,更新库存并得到更新后的值。一般可以通过两条SQL实现这一过程:

select i_price, i_name, i_data from item where i_id = ?;

UPDATE stock

SET s_order_cnt = s_order_cnt + 1,

s_ytd = s_ytd + ?,

s_remote_cnt = s_remote_cnt + ?,

s_quantity = (CASE WHEN s_quantity < ? + 10 THEN s_quantity + 91 ELSE s_quantity END) – ?

WHERE s_i_id = ?

AND s_w_id = ?

RETURNING s_quantity, s_dist_01,

CASE WHEN i_data NOT LIKE ‘%ORIGINAL%’ THEN ‘G’ ELSE (CASE WHEN s_data NOT LIKE ‘%ORIGINAL%’ THEN ‘G’ ELSE ‘B’ END) END

BULK COLLECT INTO …;

但通过建立一个可更新视图:

CREATE VIEW stock_item AS

SELECT i_price, i_name, i_data, s_i_id, s_w_id, s_order_cnt, s_ytd, s_remote_cnt, s_quantity, s_data, s_dist_01

FROM stock s, item i WHERE s.s_i_id = i.i_id;

我们就可以通过一条语句更新库存并得到商品和库存信息:

UPDATE stock_item

SET s_order_cnt = s_order_cnt + 1,

s_ytd = s_ytd + ?,

s_remote_cnt = s_remote_cnt + ?,

s_quantity = (CASE WHEN s_quantity < ? + 10 THEN s_quantity + 91 ELSE s_quantity END) – ?

WHERE s_i_id = ?

AND s_w_id = ?

RETURNING i_price, i_name, s_quantity, s_dist_01,

CASE WHEN i_data NOT LIKE ‘%ORIGINAL%’ THEN ‘G’ ELSE (CASE WHEN s_data NOT LIKE ‘%ORIGINAL%’ THEN ‘G’ ELSE ‘B’ END) END

BULK COLLECT INTO …;

这样就省去了一条语句的交互,并且更新逻辑更加直观。可更新视图允许用户可以像普通表一样操作视图,但不是所有视图都可以定义为可更新视图。比如带distinct, group by的视图,具体更新哪些行语义是不明确的,因此不能允许更新。具体到上面的stock_item两表join的视图,需要满足所更新表的unique key在join之后保持unique (key-preserved table),即item.i_id必须是唯一的这个前提。

需要强调,TPC-C规范禁止使用物化视图,而可更新视图并没有改变底层数据表格的存储形式,是符合规范的。

总结

因为TPC-C的设计原则是尽可能的“真实”反应一个OLTP系统的运行场景,我们所做的很多优化都具有广泛的适用性。例如,对于一个高并发的OLTP系统来说,大部分的SQL请求的耗时是非常短的,采用纯粹的C/S交互模型的后果必然使系统的时间浪费在应用与数据库的频繁交互中,而使用存储过程可以大大缓解这种交互的耗时,并且增强系统对于网络抖动的免疫力,这种核心能力对于一个分布式OLTP数据库是不可或缺的。

OceanBase从创立伊始就坚持走自主研发的道路,这个选择确保了我们对数据库内核有着完全的掌控能力,让我们有在任何场景下追求极致性能的底气和实力的同时,也对产品形态的发展方向有更清晰的规划和目标。在这次的TPC-C测试中,我们采用了OceanBase 2.0版本开始支持的Oracle兼容模式,存储过程和SQL全部使用了兼容Oracle的数据类型和语法,这样做也是为了在追求极致优化的同时,确保产品迭代可以沿着通用和正规的方向发展。从OceanBase 2.0版本开始,OceanBase就不断朝着Oracle兼容这个大的目标前进,随着2.2版本支持的存储过程(PL/SQL)功能的完善,我们的产品功能也完成了一轮新的迭代。我们坚信这次的TPC-C测试结果不仅仅见证了OceanBase的极致性能,也将成为OceanBase数据库走向成熟产品的一个新起点。

作者介绍:

  • 陈萌萌:现任蚂蚁金服OceanBase团队资深技术专家,负责OceanBase SQL方向的研发工作。2006年毕业于清华大学,2006年到2008年在欧洲核子研究中心(CERN)负责网格计算调度器的开发工作,2009年在美国威斯康星大学麦迪逊分校获得计算机硕士学位,先后在Oracle、华为美国研究所从事数据库的开发和研究。
  • 潘毅:现任蚂蚁金服OceanBase团队资深技术专家,负责OceanBase的并行查询和新一代OLAP引擎。曾就职于美国Oracle公司,负责Oracle数据库并行查询研发工作并有多项专利申请。

[转帖]TPC-C解析系列03_TPC-C基准测试之SQL优化的更多相关文章

  1. [转帖]TPC-C解析系列05_TPC-C基准测试之存储优化

    TPC-C解析系列05_TPC-C基准测试之存储优化 http://www.itpub.net/2019/10/08/3332/ 蚂蚁金服科技 2019-10-08 11:27:02 本文共3664个 ...

  2. [转帖]TPC-C解析系列02_OceanBase如何做TPC-C测试

    TPC-C解析系列02_OceanBase如何做TPC-C测试 http://www.itpub.net/2019/10/08/3333/   导语: 蚂蚁金服自研数据库OceanBase登顶TPC- ...

  3. [转帖]TPC-C基准测试之链路层优化

    TPC-C基准测试之链路层优化 阿里数据库 6000万 TPMC的测试结构. http://www.itpub.net/2019/10/14/3436/ 作者:易鸿伟 闫建良 王光树 在 TPC-C ...

  4. [转帖]TPC-C解析系列04_TPC-C基准测试之数据库事务引擎的挑战

    TPC-C解析系列04_TPC-C基准测试之数据库事务引擎的挑战   http://www.itpub.net/2019/10/08/3331/ OceanBase这次TPC-C测试与榜单上Oracl ...

  5. [转帖]TPC-C解析系列01_TPC-C benchmark测试介绍

    TPC-C解析系列01_TPC-C benchmark测试介绍 http://www.itpub.net/2019/10/08/3334/ 学习一下. 自从蚂蚁金服自研数据库OceanBase获得TP ...

  6. 【原】Android热更新开源项目Tinker源码解析系列之三:so热更新

    本系列将从以下三个方面对Tinker进行源码解析: Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Android热更新开源项目Tinker源码解析系列之二:资源文件热更新 A ...

  7. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  8. 【原】Android热更新开源项目Tinker源码解析系列之二:资源文件热更新

    上一篇文章介绍了Dex文件的热更新流程,本文将会分析Tinker中对资源文件的热更新流程. 同Dex,资源文件的热更新同样包括三个部分:资源补丁生成,资源补丁合成及资源补丁加载. 本系列将从以下三个方 ...

  9. ABP使用及框架解析系列 - [Unit of Work part.1-概念及使用]

    前言 ABP ABP是“ASP.NET Boilerplate Project”的简称. ABP的官方网站:http://www.aspnetboilerplate.com ABP在Github上的开 ...

随机推荐

  1. andriod studio连接SQLite

    SQLite SQLite是一种嵌入式的数据库引擎,以文件的形式保存数据的,专门适用于资源有限的设备上进行适量的数据存储. 从本质上来看,SQLite的操作方式只是一种更为便捷的文件操作,当应用程序创 ...

  2. <c:choose>

    备注一下属性 DIV没有VALUE属性     <c:choose> <c:when test="${yggModel.type=='0'}">食品< ...

  3. @Scope("prototype")的正确用法——解决Bean的多例问题

    转自: https://www.jianshu.com/p/54b0711a8ec8 1. 问题,Spring管理的某个Bean需要使用多例   在使用了Spring的web工程中,除非特殊情况,我们 ...

  4. 【多线程与并发】Java并发工具类

    主要有两类 ①并发流程控制相关:CountDownLatch.CyclicBarrier.Semaphore ②线程间交换数据相关:Exchanger: CountDownLatch 作用:允许一个或 ...

  5. C语言JSON序列化/反序列化

    最近想找一个C语言处理嵌套结构体和结构体数组的json库,理想的是能够很容易处理复杂结构体嵌套,并且使用简单的,但是没找到比较合适的,于是打算自己封装一个: 两个问题: C语言结构体本身没有元数据,这 ...

  6. 小福bbs-冲刺总结

    [小福bbs-冲刺总结] 这个作业属于哪个课程 班级链接 这个作业要求在哪里 作业要求的链接 团队名称 小福bbs 这个作业的目标 冲刺总结 作业的正文 小福bbs-冲刺总结 其他参考文献 面向百度和 ...

  7. ch341a编程器写操作超时失败

    当点击自动编写‘提示写操作超时失败’要怎么样才能解决,下面我给大家分享一下!   方法/步骤     首先我们点击操作   选择操作选项   看看箭头所指的几个地方是不是都没打上勾   我们把这几个地 ...

  8. Java RMI实践

    Java远程方法调用,即Java RMI(Java Remote Method Invocation).一种用于实现远程过程调用的应用程序编程接口.客户机上运行的程序可以调用服务器上的对象. 缺点:只 ...

  9. tomcat中设置Java 客户端程序的http(https)访问代理

    1.假定http/https代理服务器为 127.0.0.1 端口为8118 2.在tomcat/bin/catalina.sh脚本文件中设置JAVA_OPTS,如下图: 保存后重启tomcat就能生 ...

  10. (转)设置了RemoveIPC=yes 的RHEL7.2 会crash掉Oracle asm 实例和Oracle database实例

    设置了RemoveIPC=yes 的RHEL7.2  会crash掉Oracle asm 实例和Oracle database实例,该问题也会在使用Shared Memory Segment (SHM ...