title: 【概率论】6-3:中心极限定理(The Central Limit Theorem)

categories:

- Mathematic

- Probability

keywords:

- The Central Limit Theorem

- The Normal distribution

- The Delta Method

toc: true

date: 2018-04-09 09:21:44



Abstract: 本文介绍中心极限定理

Keywords: The Central Limit Theorem,The Normal distribution,The Delta Method

开篇废话

读书的一个重要用途就是建立自己对事情的理解方法,在数学领域,尤其是概率和数理统计,学习这两门课程,可以让你对世界上所有的事情的理解改变一个角度,甚至统计最后可以解释哲学,那么这样解释自然的三种方法——神学,哲学,科学,就会被改成“神学”和“科学”了,如果哪天神学也被建模了,哈哈哈,世界大一统,这里并不是对宗教或者哲学家的任何不尊重,只是谈一个小想法

【概率论】6-3:中心极限定理(The Central Limit Theorem)的更多相关文章

  1. 中心极限定理(Central Limit Theorem)

    中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为  ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...

  2. Appendix 1- LLN and Central Limit Theorem

    1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...

  3. Law of large numbers and Central limit theorem

    大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...

  4. Sampling Distribution of the Sample Mean|Central Limit Theorem

    7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  7. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  8. 中心极限定理(为什么y服从高斯分布)

    因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...

  9. BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)

    BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...

随机推荐

  1. 运行时找到main方法所在的类

    private Class<?> deduceMainApplicationClass() { try { StackTraceElement[] stackTrace = new Run ...

  2. .NET Window服务启动又马上停止,报错IO.FileNotFoundException

    最近公司需要开发一个Window服务推送系统,读取MongoDB写入消息队列,推送到各终端平台 但是在开发完成,最后的部署阶段,选中服务右击启动 看似正常,服务显示已启动(但实质已经被终止,因为Win ...

  3. SpringICO和DI区别

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  4. Window 服务器安装MongoDB 设置外网可访问

    1.下载MongoDB www.mongodb.com/download-center#community 2.下一步下一步安装. 安装完成后配置环境变量 我的的默认安装,环境变量地址  C:\Pro ...

  5. 实战远程文件同步(Remote File Sync)

    1. 远程文件同步的常见方式: 1.cron + rsync 优点: 简单 缺点:定时执行,实时性比较差:另外,rsync同步数据时,需要扫描所有文件后进行比对,进行差量传输.如果文件数量达到了百万甚 ...

  6. Linux定时清理日志脚本

    在应用疯狂打日志的情况下,服务器很容易被塞满磁盘. 先要写一个shell脚本,脚本如下. #!/bin/bash #----------------使用规范---------------- #1.该文 ...

  7. VBA文本文件(二十)

    还可以读取Excel文件,并使用VBA将单元格的内容写入文本文件.VBA允许用户使用两种方法处理文本文件 - 文件系统对象(FSO) 使用Write命令 文件系统对象(FSO) 顾名思义,FSO对象帮 ...

  8. 【转载】C#中ToArray方法将List集合转换为对应的数组

    在C#的List集合操作中,可以使用List集合自带的ToArray方法来将List集合转换为对应的Array数组元素.ToArray方法的签名为T[] ToArray(),存在于命名空间System ...

  9. text-overflow 全兼容

    text-overflow 全兼容 text-overflow 这个CSS属性用于设置或检索是否使用一个省略标记(...)标示对象内文本的溢出.比起在后台用程序截断文本再附上省略标记的做法,用CSS来 ...

  10. 为新装的Centos 7X更换源,升级VIM失败,待解决

    CentOS 7X使用阿里云CentOS的yum源 1.备份原有repo文件 #cd /etc/yum.repos.d #mv /etc/yum.repos.d/CentOS-Base.repo /e ...