Educational Codeforces Round 65 (Rated for Div. 2)题解

题目链接

A. Telephone Number

水题,代码如下:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
int a[N] ;
int n, T;
char s[N] ;
int main() {
cin >> T;
while(T--) {
cin >> n;
scanf("%s", s + 1) ;
int fir = 1;
for(;fir <= n; fir++) if(s[fir] == '8') break ;
if(n - fir + 1 >= 11) cout << "YES" << '\n' ;
else cout << "NO" << '\n' ;
}
return 0;
}

B. Lost Numbers

现在cf B题都开始交互了= =。

这个题直接询问\((1,2),(2,3),(3,4),(4,5)\)即可解出前5个,剩下一个就确定了。

判断是否成立的话我是直接随机的,毕竟长度比较小。

代码如下:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 10;
// 0 3, 1 1 = 64
int b[N][N] ;
int c[N] ;
int n, T;
int main() {
srand(time(NULL));
for(int i = 1; i <= 4; i++) {
printf("? %d %d\n", i, i + 1);
fflush(stdout);
cin >> b[i - 1][i] ;
}
vector <int> a;
a.push_back(4);
a.push_back(8);
a.push_back(15);
a.push_back(16);
a.push_back(23);
a.push_back(42);
while(1) {
int f = 1;
for(int i = 0; i < 4; i++) {
if(a[i] * a[i + 1] != b[i][i + 1]) f = 0;
}
if(f) break ;
random_shuffle(a.begin(), a.end());
}
printf("!");
for(auto v : a) printf(" %d",v);
printf("\n") ;
fflush(stdout) ;
return 0;
}

C. News Distribution

并查集水题,维护每个集合拥有元素的个数即可。

代码如下:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + 5;
int n, m;
int f[N], sum[N];
int find(int x) {
return f[x] == x ? f[x] : f[x] = find(f[x]) ;
}
void Union(int x, int y) {
int fx = find(x), fy = find(y) ;
if(fx != fy) {
f[fx] = fy;
sum[fy] += sum[fx] ;
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(0) ;
cin >> n >> m;
for(int i = 1; i <= n; i++) f[i] = i, sum[i] = 1;
for(int i = 1; i <= m; i++) {
int k, last = -1;
cin >> k;
int x;
for(int i = 1; i <= k; i++) {
cin >> x;
if(last == -1) last = x;
else Union(last, x) ;
}
}
for(int i = 1; i <= n; i++) {
int fa = find(i);
cout << sum[fa] << ' ';
}
return 0;
}

D. Bicolored RBS

我这个一开始也写的并查集来找,最后还是一直没有A。。。后面发现其实简单的,我原来的写法则要讨论很多的情况。

因为给定的括号串一定是合法的,所以配对的两个括号它们所在位置的奇偶性一定是相同的。

因为我们要求深度最大最小,那么我们对于左括号,一个给1,一个给0就行了,这样可以使得尽量两边都最小。如果对于一个')',给它的颜色为0,那么后面也接着从0开始染色,因为如果把中间已经匹配了的消去,那么就可以保证染色是1,0,1,0...这样。

代码如下:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
int n;
char s[N] ;
int main() {
int c = 0;
cin >> n;
scanf("%s", s + 1) ;
for(int i = 1; i <= n; i++) {
if(s[i] == '(') {
++c;
cout << (c & 1);
} else {
cout << (c & 1);
--c;
}
}
cout << '\n' ;
return 0;
}

E. Range Deleting

删去值域为\([l,r]\)的数后,如果剩下的数满足条件,那么我们就可以得到\(down[l-1]<up[r+1]\),这里的\(down[i]\)表示值为i并且满足前面的值满足单调分布时的最大位置,\(up[i]\)则表示最小位置。

然后我们枚举枚举下界,来确定上界就行了,下界增大时,上界不会减小,所以复杂度是\(O(n)\)的。

这个题的关键就是能够想到维护值域的前缀、后缀信息。

代码如下:

Code
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f;
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;
int n, m;
int a[N], up[N], dw[N], mn[N], mx[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> m;
for(int i = 1; i <= m; i++) mn[i] = n + 1;
for(int i = 1; i <= n; i++) {
cin >> a[i] ;
mn[a[i]] = min(mn[a[i]], i) ;
mx[a[i]] = max(mx[a[i]], i) ;
}
dw[0] = 0;
for(int i = 1; i <= m; i++) {
if(dw[i - 1] < mn[i]) {
dw[i] = max(dw[i - 1], mx[i]) ;
} else dw[i] = n + 2;
}
up[m + 1] = n + 1;
for(int i = m; i >= 1; i--) {
if(up[i + 1] > mx[i]) {
up[i] = min(mn[i], up[i + 1]);
} else up[i] = -1;
}
int j = 2;
ll ans = 0;
for(int i = 0; i < m; i++) {
while(j <= m && (i + 1 >= j || dw[i] > up[j])) ++j;
if(dw[i] < up[j]) ans += m - j + 2;
}
cout << ans;
return 0;
}

F. Scalar Queries

填坑来了...

这是一个十分巧妙的题。反正我没想出来...

题目中定义了\(f(l,r)=\sum_{i=1}^{r-l+1}b_i*i\),这里的\(b_i\)就是原数组\(a_1,a_2,\cdots,a_n\)中的\(a_l,a_{l+1},\cdots,a_{r}\)排序过后的值。

然后题目要求计算\(\sum_{1\leq l\leq r\leq n}f(l,r)\)。

直接考虑有点麻烦,我们就可以考虑每一个数的贡献。

假设现在考虑的为\(a_i\),那么包含它的区间就有\(i*(n-i+1)\)个,对于每一个区间,假设比\(a_i\)小的数的个数为\(x_i\),那么此时\(a_i\)的贡献就为\((x_i+1)*a_i\),我们对于每个区间的1提出来,那么总共就是\(i*(n-i+1)*a_i\)。易知最终的答案就为\((\sum_{j=1}^{i*(n-i+1)}x_j)*a_i\)。

现在我们的任务就是统计包含\(a_i\)的所有区间中,比\(a_i\)小的数的个数

此时我们也转换一下,考虑每一个数的贡献,对于在\(a_i\)左边的数,其贡献就为\(j*(n-i+1)\);在右边的贡献就为\(k*i\),这里\(j,k\)分别指从左边开始第几个,从右边开始第几个。因为左右两边等价,我们分析左边:\((n-i+1)*\sum_{j=1}^{i}j*[a_j<a_i]\)。

右边求和的式子,我们用树状数组就可以解决了。

关键在于这两次转化。cf题解里面全是用的数学公式来推导,其实也没有那么麻烦,但感觉这进一步加深了我对数学思维在竞赛中应用的理解吧...

代码如下:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + 5, MOD = 1e9 + 7;
int n;
ll a[N], b[N], c[N];
ll s[2][N] ;
int lowbit(int x) {
return x & (-x) ;
}
ll query(int x) {
ll ans = 0;
for(ll i = x; i > 0; i -= lowbit(i)) ans += c[i] ;
return ans ;
}
void update(int x, int val) {
for(int p = x; p < N; p += lowbit(p)) c[p] += val ;
}
void add(ll &x, ll y) {
x += y;
if(x >= MOD) x %= MOD ;
}
ll mul(ll x, ll y) {
x *= y;
if(x >= MOD) x %= MOD ;
return x;
}
int main() {
ios::sync_with_stdio(false);cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i], b[i] = a[i];
sort(b + 1, b + n + 1);
int D = unique(b + 1, b + n + 1) - b - 1;
ll ans = 0;
for(int k = 0; k < 2; k++) {
memset(c, 0, sizeof(c)) ;
for(int i = 1; i <= n; i++) {
int p = lower_bound(b + 1, b + D + 1, a[i]) - b;
s[k][i] = query(p) ;
update(p, i) ;
}
reverse(a + 1, a + n + 1) ;
}
reverse(s[1] + 1, s[1] + n + 1) ;
for(int i = 1; i <= n; i++) {
add(ans, mul(a[i], mul(i, n - i + 1))) ;
add(ans, mul(a[i], mul(s[0][i], n - i + 1))) ;
add(ans, mul(a[i], mul(s[1][i], i))) ;
}
cout << ans;
return 0;
}

Educational Codeforces Round 65 (Rated for Div. 2)题解的更多相关文章

  1. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  2. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  3. Educational Codeforces Round 60 (Rated for Div. 2) 题解

    Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...

  4. Educational Codeforces Round 58 (Rated for Div. 2) 题解

    Educational Codeforces Round 58 (Rated for Div. 2)  题目总链接:https://codeforces.com/contest/1101 A. Min ...

  5. Educational Codeforces Round 65 (Rated for Div. 2) D. Bicolored RBS

    链接:https://codeforces.com/contest/1167/problem/D 题意: A string is called bracket sequence if it does ...

  6. Educational Codeforces Round 65 (Rated for Div. 2) C. News Distribution

    链接:https://codeforces.com/contest/1167/problem/C 题意: In some social network, there are nn users comm ...

  7. Educational Codeforces Round 65 (Rated for Div. 2) B. Lost Numbers

    链接:https://codeforces.com/contest/1167/problem/B 题意: This is an interactive problem. Remember to flu ...

  8. Educational Codeforces Round 65 (Rated for Div. 2) A. Telephone Number

    链接:https://codeforces.com/contest/1167/problem/A 题意: A telephone number is a sequence of exactly 11  ...

  9. Educational Codeforces Round 65 (Rated for Div. 2)B. Lost Numbers(交互)

    This is an interactive problem. Remember to flush your output while communicating with the testing p ...

随机推荐

  1. 搭建Hadoop+Python的大数据开发环境

    实验环境 CentOS镜像为CentOS-7-x86_64-Everything-1804.iso 虚机配置 节点名称 IP地址 子网掩码 CPU/内存 磁盘 安装方式 master 192.168. ...

  2. 安装-apache skywalking (java 应用性能监控)

    官网:http://skywalking.apache.org/ 服务器:10.30.31.28 centos 7 jdk 1.8.x ES 5.x 5.0.0-bet a2版本 . http://s ...

  3. 运维(SA)修仙 之路

    运维(SA)修仙 之路: 大纲: 系统 ,网络 ,数据库,开发 系统 :linux(cent OS && ubuntu)  网络 :路由,防火墙,安全  数据库:mysql, mong ...

  4. 深度学习 NI-DL 框架

    NI-DL 应用框架:图像分类,目标检测,分割提取. 底层:TensorFlow,Keras,Cuda,C/C++ 上层:C#.NET Winform [图像分类] 识别一张图片是否为某个类型的物体/ ...

  5. 记一个Redis分布式事务锁

    package com.mall.common; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory. ...

  6. C的温习-开头篇1

    编译运行C语言可以用很多软件MicrosoftVisualC++.MicrosoftVisualStudio.DEVC++.Code::Blocks.BorlandC++.WaTComC++.Borl ...

  7. c#NAudio 录音功能实现

    在网上找了很多类似录音教程效果都不好,或根本不能录音,代码由网上借鉴修改(完整实现录音播放功能) 1.首先新建引用类  RecordController public class RecordCont ...

  8. jquery.validate.unobtrusive的使用

    应用 一.引入 <script src="Scripts/jquery-1.7.1.min.js"></script> <script src=&qu ...

  9. Mycat分布式数据库架构解决方案--搭建MySQL读写分离环境--一主多从

    echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 本文主 ...

  10. vuex简单化理解和安装使用

     1.简单化理解 首先你要明白 vuex 的目的 就是为了 集中化的管理项目中 组件所有的 数据状态 (state) 0. 第一步你要明白 , store 的重要性 , store 类似一个中央基站, ...