contour - 绘制等高线

mp.contour(x, y, z, 等高线条数,colors=颜色, linewidth=线宽)#等高线绘制

contourf - 填充等高线

mp.contourf(x, y, z, 等高线条数,cmap=颜色映射)# 等高线填充

clabel - 标记等高线,向CS(由contour函数返回的matplotlib.contour.ContourSet对象)中的轮廓线添加标签

clabel(CS, *args, **kwargs) 
  • CS - 由contour函数产生的句柄对象
  • fontsize - string(smaller, x-large) or float ,optional
  • colors - Color of each label
    • None, 标记的颜色为轮廓的颜色
    • one string color (e.g color = 'r' ), 所有的标签均为红色
    • a tuple of matplotlib color args (string, float, rgb, etc), 不同的标签按照指定的颜色标记
  • inline - bool, optional . 默认True(在标签位值移除轮廓线,也即标签覆盖轮廓线,而非穿越)
  • inline_spacing - float, optional,默认5,放置内联时,标签两侧留有的像素空间
  • fmt - string or dict, optional, 默认'%1.3f ',保留小数位。1.3中的1表示输出位宽,3表示小数位长度,此时实际数据会覆盖掉该数据对应的轮廓线;当9.3时,轮廓线会被覆盖掉9个位置,同时小数点后保留3位,也就是说,轮廓线移除的长度大于数据长度
  • manual - bool or iterable, optional , 手动添加标签。忽略该字典
  • rightside_up - bool, optional,默认 True(标签旋转均以正负90度计)
  • use_clabeltext - bool, optional,默认False,若为True,则用 `ClabelText` class (instead of `Text`) 创建标签,当使用“CababelTress”绘制文本时,会重新计算文本的旋转角度,因此,如果轴的角度发生变化时,可以使用“CababelTress”来旋转角度。

举例:One-class SVM

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2.4, X - 2.3]
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=0.1, high=4, size=(20, 2))
# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel='rbf', gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outlier = y_pred_outliers[y_pred_outliers == 1].size # plot the line , the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) plt.title("Novelty Detection")
# 填充等高线图
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
# 绘制等高线
a = plt.contour(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred') s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='green', s=s, edgecolors='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s, edgecolors='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s, edgecolors='k') plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],
["learned frontier", 'training observations',
"new regular observations", "new abnormal observations"],
loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))
plt.xlabel("error train: %d/200; errors novel regular: %d/40; errors novel abnormal:%d/40" %
(n_error_train, n_error_test, n_error_outlier))
plt.show()

参考文献:

【1】基于matplotlib的数据可视化 - 等高线 contour 与 contourf

 

matplotlib---画等高线的更多相关文章

  1. matplotlib画图实例:pyplot、pylab模块及作图參数

    http://blog.csdn.net/pipisorry/article/details/40005163 Matplotlib.pyplot画图实例 {使用pyplot模块} matplotli ...

  2. MatplotLib常用基本操作

    本文记录matlibplot常用基本操作,都是基本功能,不涉及复杂联合操作,其中各用法详细用法可参考官网: 1. 基本画图操作 ##mofan_matplotlib.pyplot import mat ...

  3. matplotlib等高线图-【老鱼学matplotlib】

    等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中. 因为等高线的图有三个信息:x, y以及x,y所对应的高度值. 这个高度值的计算我们用一个函数来表述: # ...

  4. 基于matplotlib的数据可视化 - 等高线 contour 与 contourf

    contour 与contourf 是绘制等高线的利器. contour  - 绘制等高线 contourf - 填充等高线 两个的返回值值是一样的(return values are the sam ...

  5. matplotlib绘制等高线图

    参考自Matplotlib Python 画图教程 (莫烦Python)(12)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili.com/video/av16 ...

  6. python+matplotlib 绘制等高线

    python+matplotlib 绘制等高线 步骤有七: 有一个m*n维的矩阵(data),其元素的值代表高度 构造两个向量:x(1*n)和y(1*m).这两个向量用来构造网格坐标矩阵(网格坐标矩阵 ...

  7. python之《matplotlib》

    # _*_coding:utf-8_*_# /usr/bin/env python3# Author:book Mikiimport matplotlib.pyplot as pltimport nu ...

  8. matplotlib的学习10-Contours 等高线图

    import matplotlib.pyplot as plt import numpy as np ''' 画等高线 数据集即三维点 (x,y) 和对应的高度值,共有256个点. 高度值使用一个 h ...

  9. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  10. matplotlib 高级用法实例--共享x轴

    http://localhost:8888/notebooks/duanqs/matplotlib_advanced_example.ipynb 我不会弄呀, 刚才从matplotlib文档里吧示例用 ...

随机推荐

  1. <Tree.PreOrder> DFS 113, 129

    113. Path Sum II 利用DFS的三要素, 出口1,出口2,拆解,记得回溯的时候要回退一位path. class Solution { public List<List<Int ...

  2. 【day04】PHP

    一. 运算符 1.按功能分  (1)算术运算符  (2)字符运算符  (3)赋值运算符  (4)比较运算符  (5)逻辑运算符  (6)错误抑制符  (7)执行运算符 2.逻辑运算符 : ! & ...

  3. 洛谷 题解 P4198 【楼房重建】

    首先明确问题,对于每栋楼房的斜率K=H/X,问题就是问有多少个楼房的K比前面所有楼房的K都要大. 这题树套树当然可以,但是挺麻烦的,本渣觉得最简单就是分块…… 将N个楼房分成T块,不断维护每个块内楼房 ...

  4. 公共组件及脚手架webpack模板

    一.公共组件的创建和使用 前面已经学习vue组件时,了解了公共组件,但在脚手架项目中只使用过局部组件.这里是讲解全局组件如何在脚手架项目中去使用. 1.创建全局组件 在src/components/C ...

  5. [LeetCode] 465. Optimal Account Balancing 最优账户平衡

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  6. 《转载》仅需3分钟,你就能明白Kafka的工作原理

    仅需3分钟,你就能明白Kafka的工作原理 周末无聊刷着手机,某宝网 App 突然蹦出来一条消息“为了回馈老客户,女朋友买一送一,活动仅限今天!”. 买一送一还有这种好事,那我可不能错过!忍不住立马点 ...

  7. springcloud(七,多个服务消费者配置,以及zuul网关案例)

    spring cloud (一.服务注册demo_eureka) spring cloud (二.服务注册安全demo_eureka) spring cloud (三.服务提供者demo_provid ...

  8. C# HTTP系列6 HttpWebResponse.StatusCode 响应代码中文详解

    系列目录     [已更新最新开发文章,点击查看详细] 1xx - 信息提示 这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个 1xx 响应 · 100 - Continue ...

  9. pytorch 查看中间变量的梯度

    pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermed ...

  10. Unity Shader 屏幕后效果——高斯模糊

    高斯模糊是图像模糊处理中非常经典和常见的一种算法,也是Bloom屏幕效果的基础. 实现高斯模糊同样用到了卷积的概念,关于卷积的概念和原理详见我的另一篇博客: https://www.cnblogs.c ...