本文科普一下高斯白噪声(white Gaussian noise,WGN)。

  百度百科上解释为“高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布”,听起来有些晦涩难懂,下面结合例子通俗而详细地介绍一下。

  白噪声,如同白光一样,是所有颜色的光叠加而成,不同颜色的光本质区别是的它们的频率各不相同(如红色光波长长而频率低,相应的,紫色光波长短而频率高)。白噪声在功率谱上(若以频率为横轴,信号幅度的平方为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到高频,低频指的是信号不变或缓慢变化,高频指的是信号突变。

  由傅里叶变换性质可知,时域有限,频域无限;频域有限,时域无限。那么频域无限的信号变换到时域上,对应于冲击函数的整数倍(由公式也可推得:)。即说明在时间轴的某点上,噪声孤立,与其它点的噪声无关,也就是说,该点噪声幅值可以任意,不受前后点噪声幅值影响。简而言之,任意时刻出现的噪声幅值都是随机的(这句话实际上说的就是功率谱密度服从均与分布的意思,不同的是,前者从时域角度描述,而后者是从频域角度描述)。这里要指出功率谱密度(Power Spectral Density,PSD)的概念,它从频域角度出发,定义了信号的功率是如何随频率分布的,即以频率为横轴,功率为纵轴

  既然白噪声信号是“随机”的,那么反过来,什么叫做“相关”呢?顾名思义,相关就是某一时刻的噪声点不孤立,和其它时刻的噪声幅值有关。其实相关的情况有很多种,比如此时刻的噪声幅值比上一时刻的大,而下一时刻的噪声幅值比此时刻的还大,即信号的幅值在时间轴上按从小到大的顺序排列。除此之外,幅值从大到小,或幅值一大一小等都叫做“相关”,而非“随机”的。

  解释完了“白噪声”,再来谈谈“高斯分布”。高斯分布,又名正态分布(normal distribution)。概率密度函数曲线的形状又两个参数决定:平均值和方差。简单来说,平均值决定曲线对称中线,方差决定曲线的胖瘦,即贴近中线的程度。概率密度定义了信号出现的频率是如何随着其幅值变化的,即以信号幅值为横轴,以出现的频率为纵轴。因此,从概率密度角度来说,高斯白噪声的幅度分布服从高斯分布

  描述了“白噪声”和“高斯噪声”两个含义,那么,回到文章开头的解释:高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布。它的意义就很明确了,上半句是从空域(幅值)角度描述“高斯噪声”,而下半句是从频域角度描述“白噪声”。

  下面以matlab程序演示,感性认识一下高斯白噪声。

程序1(高斯白噪声):

  由上图可以看出,高斯白噪声的功率谱密度服从均匀分布

  若对噪声进行由小到大排序,则使其从随机噪声变为相关噪声,则功率谱密度就不再是均匀分布了。

程序2(非高斯白噪声):

  下面让我们从高斯白噪声的统计信息和幅值分布看一下它的特点。

程序3(高斯白噪声):

  直方图的纵轴为频次,而概率密度的纵轴为频率,但是两者大致的分布曲线确是一样的,因此,这幅图解释了高斯白噪声的幅度分布服从高斯分布

转自: http://www.cnblogs.com/YoungHit/archive/2012/03/09/2388230.html

高斯白噪声(white Gaussian noise,WGN)的更多相关文章

  1. 小小知识点(二十三)circularly symmetric complex zero-mean white Gaussian noise(循环对称复高斯噪声)

    数学定义 http://en.wikipedia.org/wiki/Complex_normal_distribution 通信中的定义 在通信里,复基带等效系统的噪声是复高斯噪声,其分布就是circ ...

  2. [转] Matlab中给信号加高斯白噪声的方法

    MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声. 1. WGN:产生高斯白噪声 y = ...

  3. MATLAB中产生高斯白噪声的两个函数

    MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声.1.WGN:产生高斯白噪声 y = wg ...

  4. Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类

    Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 内容大纲 加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 (1. PSK; 2. QPSK; 3.8 ...

  5. 【FPGA】高斯白噪声的Verilog实现

    本文章主要讨论高斯白噪声的FPGA实现.简单的方法可以采用在Matlab中产生服从一定均值和方差的I.Q两路噪声信号.然后将两组数据存在FPGA中进行回放,以此来产生高斯白噪声.这种方法优点是产生方法 ...

  6. Matrix 高斯消元Gaussian elimination 中的complete pivoting和partial pivoting

    首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first elem ...

  7. 聚类之高斯混合模型(Gaussian Mixture Model)【转】

    k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...

  8. 混合高斯模型(Gaussian mixture model, GMM)

    1. 前言 这就是为什么我要学习一下二维高斯分布的原因: 总感觉数学知识不够用呐,顺带把混合高斯模型也回顾一下. 2. 单高斯模型(Gaussian single model, GSM) 2.1 一维 ...

  9. vs2015+opencv3.3.1 实现 c++ 彩色高斯滤波器(Gaussian Smoothing, Gaussian Blur, Gaussian Filter)

    //高斯滤波器 https://github.com/scutlzk#include <opencv2\highgui\highgui.hpp> #include <iostream ...

随机推荐

  1. 将数据提取到CSV文件中保存

    这个方法可以实现,登录获取的token放入CSV文件,供后续调用,这里没有用登录举例 FileWriter fstream = new FileWriter("E:\\apache-jmet ...

  2. Luogu P4062 [CTSC2018]混合果汁 (主席树)

    二分$d$, 转为判断判断是否能取到$Lj$升, 再可持久化一下就好了 #include <iostream> #include <algorithm> #include &l ...

  3. bzoj1074

    题意: 给你n次折叠 m个询问 每次询问折叠后,xi,yi有几层 题解: 计算几何 模拟 #include<cstdio> #include<cstdlib> #include ...

  4. 《转》快速导出SSRS之RDL文件

    select name,[path],cast(cast(content AS varbinary(max)) as xml) as RDLDef from dbo.[Catalog] where t ...

  5. protel99 se中出现许多Backup of 文件,修改过保存时,总会出现备份文件,怎么才能取消这一设置?

    在file选项左边有个向下的大箭头标示 点开 有个prefereces项 点开之 把create backup项勾掉即可

  6. maven项目目录结构 学习笔记

    maven的约定 1.src/main/java--------------------------------存放项目的.java文件 2.src/main/resources----------- ...

  7. ubuntu 11.04 old sources.list

    #deb cdrom:[Ubuntu 11.04 _Natty Narwhal_ - Release amd64 (20110427.1)]/ natty main restricted # See ...

  8. js实现trim()方法

    在面向对象编程里面去除字符串左右空格是很容易的事,可以使用trim().ltrim() 或 rtrim(),在jquery里面使用$.trim()也可以轻松的实现.但是在js中却没有这个方法.下面的实 ...

  9. 基于typescript 强大的 nestjs 框架试用

    nestjs 一个nodejs 的graphql 框架 安装 npm i -g @nestjs/cli 初始化项目 nest new dalong 运行demo 使用yarn yarn start 添 ...

  10. linux环境下git的安装配置

    1.查看git的最新版本: 查看最新版git:访问https://www.kernel.org/pub/software/scm/git/或者https://github.com/git/git/re ...