【bzoj4372】烁烁的游戏 动态点分治+线段树
题目描述
给一颗n个节点的树,边权均为1,初始点权均为0,m次操作:
Q x:询问x的点权。
M x d w:将树上与节点x距离不超过d的节点的点权均加上w。
输入
第一行两个正整数:n,m
接下来的n-1行,每行三个正整数u,v,代表u,v之间有一条边。
接下来的m行,每行给出上述两种操作中的一种。
输出
对于每个Q操作,输出当前x节点的皮皮鼠数量。
样例输入
7 6
1 2
1 4
1 5
2 3
2 7
5 6
M 1 1 2
Q 5
M 2 2 3
Q 3
M 1 2 1
Q 2
样例输出
2
3
6
题解
动态点分治+线段树
看到距离一眼动态点分治。考虑单次修改对哪些点产生贡献:对于 $x$ 和它在点分树上距离为 $l$ 的祖先 $y$ ,如果 $l\le d$ ,则在 $y$ 子树中与 $y$ 距离不超过 $d-l$ 的点会得到 $x$ 的贡献。
因此对于每个点开一棵线段树,维护点分树内与它的距离中哪些受到了影响。查询时直接从 $x$ 向根移动,过程中查询在每个点处的贡献。其中需要容斥一下。
需要完成:前缀修改、单点查询,可以差分后转变为:单点修改、后缀查询。使用线段树维护。
时间复杂度 $O(n\log^2n)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , deep[N] , pos[N] , val[N << 1][18] , log[N << 1] , tot;
int ls[N << 7] , rs[N << 7] , sum[N << 7] , tp , ra[N] , rb[N];
int n , si[N] , ms[N] , ts , root , fa[N] , vis[N];
char str[5];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int pre)
{
int i;
pos[x] = ++tot , val[tot][0] = deep[x];
for(i = head[x] ; i ; i = next[i])
if(to[i] != pre)
deep[to[i]] = deep[x] + 1 , dfs(to[i] , x) , val[++tot][0] = deep[x];
}
inline int dis(int x , int y)
{
int tx = pos[x] , ty = pos[y] , k;
if(tx > ty) swap(tx , ty);
k = log[ty - tx + 1];
return deep[x] + deep[y] - (min(val[tx][k] , val[ty - (1 << k) + 1][k]) << 1);
}
void update(int p , int a , int l , int r , int &x)
{
if(!x) x = ++tp;
sum[x] += a;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , l , mid , ls[x]);
else update(p , a , mid + 1 , r , rs[x]);
}
int query(int p , int l , int r , int x)
{
if(l == r) return sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return query(p , l , mid , ls[x]) + sum[rs[x]];
else return query(p , mid + 1 , r , rs[x]);
}
void getroot(int x , int pre)
{
int i;
si[x] = 1 , ms[x] = 0;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]] && to[i] != pre)
getroot(to[i] , x) , si[x] += si[to[i]] , ms[x] = max(ms[x] , si[to[i]]);
ms[x] = max(ms[x] , ts - si[x]);
if(ms[x] < ms[root]) root = x;
}
void divide(int x)
{
int i;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
ts = si[to[i]] , root = 0 , getroot(to[i] , 0) , fa[root] = x , divide(root);
}
void modify(int x , int d , int w)
{
int i , t;
for(i = x ; i ; i = fa[i])
if(d >= (t = dis(x , i)))
update(d - t , w , 0 , n , ra[i]);
for(i = x ; fa[i] ; i = fa[i])
if(d >= (t = dis(x , fa[i])))
update(d - t , w , 0 , n , rb[i]);
}
int solve(int x)
{
int i , ans = 0;
for(i = x ; i ; i = fa[i]) ans += query(dis(x , i) , 0 , n , ra[i]);
for(i = x ; fa[i] ; i = fa[i]) ans -= query(dis(x , fa[i]) , 0 , n , rb[i]);
return ans;
}
int main()
{
int m , i , j , x , y , z;
scanf("%d%d" , &n , &m);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(1 , 0);
for(i = 2 ; i <= tot ; i ++ ) log[i] = log[i >> 1] + 1;
for(i = 1 ; (1 << i) <= tot ; i ++ )
for(j = 1 ; j <= tot - (1 << i) + 1 ; j ++ )
val[j][i] = min(val[j][i - 1] , val[j + (1 << (i - 1))][i - 1]);
ms[0] = 1 << 30 , ts = n , getroot(1 , 0) , divide(root);
while(m -- )
{
scanf("%s%d" , str , &x);
if(str[0] == 'M') scanf("%d%d" , &y , &z) , modify(x , y , z);
else printf("%d\n" , solve(x));
}
return 0;
}
【bzoj4372】烁烁的游戏 动态点分治+线段树的更多相关文章
- BZOJ4372烁烁的游戏——动态点分治+线段树(点分树套线段树)
题目描述 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w只皮皮鼠.皮皮鼠会被 ...
- [bzoj4372] 烁烁的游戏 [动态点分治+线段树+容斥原理]
题面 传送门 思路 观察一下题目,要求的是修改"距离点$u$的距离一定的点权值",那这个就不能用传统的dfs序类算法+线段树维护,因为涉及到向父亲回溯的问题 看到和树上距离相关的东 ...
- [BZOJ4372]烁烁的游戏(动态点分治+线段树)
和[BZOJ3730]震波几乎一样,每个点建两棵线段树分别代表它的管辖范围内以它为LCA的路径的贡献和它对父亲的贡献. 注意点分树上的点的距离在原树上不单调,所以不能有若距离超出限制就break之类的 ...
- bzoj 4372: 烁烁的游戏 动态点分治_树链剖分_线段树
[Submit][Status][Discuss] Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠. 题意: 给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠. 烁烁他每次会跳 ...
- BZOJ4372: 烁烁的游戏(动态点分治)
Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w只皮皮 ...
- 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树
题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...
- 【bzoj3730】震波 动态点分治+线段树
题目描述 在一片土地上有N个城市,通过N-1条无向边互相连接,形成一棵树的结构,相邻两个城市的距离为1,其中第i个城市的价值为value[i].不幸的是,这片土地常常发生地震,并且随着时代的发展,城市 ...
- 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树
题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...
- BZOJ4372 烁烁的游戏(动态点分治+线段树)
建出点分树,每个节点维护其作为点分树上lca对子树内点的贡献,线段树维护即可,同时另开一个线段树以减掉父亲重复的贡献. #include<iostream> #include<cst ...
随机推荐
- day 3 模块
1.系统自带模块 xxx.py 文件 就是模块 ### 模块存放位置 In [1]: import os In [2]: os.__file__ Out[2]: '/usr/lib/python3. ...
- RHCSA-day3
10.配置LDAP客户端 在classroom.example.com上已经部署了一台LDAP认证服务器,按以下要求将你的系统加入到该LDAP服务中,并使用Kerberos认证用户密码: 该LDAP认 ...
- 支付宝、微信、QQ 收款二维码三合一
最近折腾了一下合并收款码,简单记录一下折腾的过程,方法不唯一,只是提供一种思路,如果各位大佬有更加简单粗暴的办法,那就更好了. 原理 首先解析出三个二维码的内容,用 Nginx 判断 User age ...
- HTML中CSS入门基础
HTML.CSS 实用css有三种格式:内嵌:内联:外部: 分类:内联:写在标记的属性位置,优先级最高,重用性最差内嵌:写在页面的head中,优先级第二,重用性一般外部:写在一个以css结尾的文件中, ...
- 【C#利用后台动态加载数据】Winform“防界面卡死”【BackgroundWorker】类
using System.ComponentModel 直接使用EgProgressBar方法 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...
- 关于Eclipse在servlet中连接数据库时出现驱动加载失败的解决
问题:在队友发来的项目中想将他获取到的数据通过数据库储存,出现驱动加载失败问题 解决:首先百度了下相关情况,大多数都是说下载mysql-connector-java-5.1.39-bin.jar包,然 ...
- python-编程从入门到实践
python-编程从入门到实践 1.python文件后缀名: .py 是Python的源码文件,由Python.exe解释. .pyc 是Python的编译文件.pyc 文件往往代替 py 文件发布: ...
- OpenLDAP编译安装及配置
原文发表于cu:2016-06-20 参考文档: 原理:http://seanlook.com/2015/01/15/openldap_introduction/ 官方文档: http://www.o ...
- Pvmove中断后恢复LV状态
Pvmove中断后恢复LV状态 pvmove执行时关闭中断窗口后,pvmove进程会被强制杀掉,从而导致lv的状态异常,无法重新进行pvmove和其他lvm镜像增加相关操作,可以通过如下方式修复: ...
- c++ Dynamic Memory (part 1)
1. make_shared<T>(args): return a shared_ptr dynamically allocated object of type T. Use args ...