BZOJ3714 PA2014Kuglarz(最小生成树)
每次询问所获得的可以看做是两个前缀和的异或。我们只要知道任意前缀和的异或就可以得到答案了。并且显然地,如果知道了a和b的异或及a和c的异或,也就知道了b和c的异或。所以一次询问可以看做是在两点间连边,所要求的东西就是最小生成树了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,fa[N];
long long ans=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N*N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3714.in","r",stdin);
freopen("bzoj3714.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();int t=;
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
t++,edge[t].x=i-,edge[t].y=j,edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(edge[i].x)!=find(edge[i].y)) ans+=edge[i].z,fa[find(edge[i].x)]=find(edge[i].y);
cout<<ans;
return ;
}
BZOJ3714 PA2014Kuglarz(最小生成树)的更多相关文章
- 【BZOJ3714】Kuglarz(最小生成树)
[BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...
- BZOJ3714 [PA2014]Kuglarz 【最小生成树】
题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...
- 【BZOJ3714】[PA2014]Kuglarz 最小生成树
[BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...
- BZOJ3714 PA2014 Kuglarz 最小生成树
题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...
- [bzoj3714] [PA2014] Kuglarz(最小生成树)
我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...
- 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz
ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...
- [BZOJ3714]Kuglarz(最小生成树)
Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
随机推荐
- sql语句-2-字符串数字日期时间
- PostgreSQL通过mysql_fdw访问MySQL数据库
Mysql与PostgreSQL的安装过程省略. 为简便起见,把MySQL和PostgreSQL都安装在一个机器上,然后在此机器上(准确地说是在PostgreSQL运行的机器上)安装mysql_fdw ...
- Flutter系列博文链接
Flutter系列博文链接 ↓: Flutter基础篇: Flutter基础篇(1)-- 跨平台开发框架和工具集锦 Flutter基础篇(2)-- 老司机用一篇博客带你快速熟悉Dart语法 Flutt ...
- 【转】查看mysql表结构和表创建语句的方法
转自:http://blog.csdn.net/business122/article/details/7531291 查看mysql表结构的方法有三种: 1.desc tablename; 例如: ...
- sql server数据库中char,varchar,nvarchar字段的区别
Char,varchar,nvarchar字段是sql server数据库中的三种字段类型.好多人在选择存储的时候不知道如何抉择,我给大家讲下这个三个字段类型的区别. Char(n)是长度为n个字节的 ...
- 天下武功,无快不破,Python开发必备的6个库
01 Python 必备之 PyPy PyPy 主要用于何处? 如果你需要更快的 Python 应用程序,最简单的实现的方法就是通过 PyPy ,Python 运行时与实时(JIT)编译器.与使用普通 ...
- Centos下安装并设置nginx开机自启动
一.在centos环境下安装下载并安装nginx,由于nginx需要依赖一些环境才能安装,主要依赖g++.gcc.openssl-devel.pcre-devel和zlib-devel这些环境,首先得 ...
- Open vSwitch for CentOS
原文发表于cu:2016-06-02 本文属于重发,ovs当前的安装方式可能略有不同. 参考文档: 官方文档: http://openvswitch.org/support/dist-docs-2.5 ...
- Visionpro学习网
重码网是一个在线机器视觉学习网站,推出了Halcon,Visionpro机器视觉学习视频教程,视频内容通俗易懂,没有编程基础的同学,照着视频练习,也同样可以学会. 学机器视觉,拿高薪,成就技术大拿.重 ...
- Java中static关键字的作用和用法详细介绍
static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,也可以形成静态static代码块,但是Java语言中没有全局变量的概念. 被static修饰的成员变量和成员方法独立于该类的任何 ...