每次询问所获得的可以看做是两个前缀和的异或。我们只要知道任意前缀和的异或就可以得到答案了。并且显然地,如果知道了a和b的异或及a和c的异或,也就知道了b和c的异或。所以一次询问可以看做是在两点间连边,所要求的东西就是最小生成树了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,fa[N];
long long ans=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N*N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3714.in","r",stdin);
freopen("bzoj3714.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();int t=;
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
t++,edge[t].x=i-,edge[t].y=j,edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(edge[i].x)!=find(edge[i].y)) ans+=edge[i].z,fa[find(edge[i].x)]=find(edge[i].y);
cout<<ans;
return ;
}

BZOJ3714 PA2014Kuglarz(最小生成树)的更多相关文章

  1. 【BZOJ3714】Kuglarz(最小生成树)

    [BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...

  2. BZOJ3714 [PA2014]Kuglarz 【最小生成树】

    题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...

  3. 【BZOJ3714】[PA2014]Kuglarz 最小生成树

    [BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...

  4. BZOJ3714 PA2014 Kuglarz 最小生成树

    题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...

  5. [bzoj3714] [PA2014] Kuglarz(最小生成树)

    我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...

  6. 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz

    ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...

  7. [BZOJ3714]Kuglarz(最小生成树)

    Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...

  8. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  9. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

随机推荐

  1. django项目的配置文件settings.py详解

    我们创建好了一个Python项目(mysite/)之后,需要在项目中添加模块应用(polls/),在模块应用中添加处理功能逻辑,如添加模块中的视图处理函数(polls.views.index()),这 ...

  2. Maven学习(八)-----Maven依赖机制

    Maven依赖机制 在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级. 案例分析 让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要 ...

  3. 身份证扫描识别/身份证OCR识别的正确姿势,你get到了吗?

    自从国家规定电信实名制之后,实名制已经推广到各个领域:办理通信业务需要实名制.银行开户需要实名制.移动支付需要实名制,就连注册个自媒体账户都需要实名制. 而实名制的背后,就是身份证信息的采集和录入验证 ...

  4. Linux 安装Zookeeper<单机版>(使用Mac远程访问)

    阅读本文需要先阅读安装Zookeeper<准备> 新建目录 mkdir /usr/local/zookeeper 解压 cd zookeeper压缩包所在目录 tar -xvf zooke ...

  5. 吴恩达 Deep learning 第一周 深度学习概论

    知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优 ...

  6. Facebook190亿美元收购WhatsApp

    Facebook收购WhatsApp,前后只花费10天时间.这是Facebook迄今规模最大的一笔收购,可能也是史上最昂贵的一笔针对靠私人风投起家的企业的收购案. 2月9日,马克•扎克伯格(Mark ...

  7. 3D打印产业链全景图

  8. postman的巨坑 之 cookie

    问题描述:一个后端接口,该接口需要校验登录态,登录态通过cookie中的一个传参k判断.在保证登录的前提下,调用机器A上的接口一直报“用户未登录”,调机器B上就没问题,于是开始排查问题. 解决过程: ...

  9. Alpha 冲刺6

    队名:日不落战队 安琪(队长) 今天完成的任务 回收站前端界面. 明天的计划 查看个人信息界面. 还剩下的任务 信息修改前端界面. 设置界面. 遇到的困难 模拟机莫名其妙就崩了,调试了很久,后在队友的 ...

  10. Struts2(二)

    以下内容是基于导入struts2-2.3.32.jar包来讲的 1.关于StrutsPrepareAndExecuteFilter 启动StrutsPrepareAndExecuteFilter时加载 ...