E. Vladik and cards
time limit per test 

2 seconds

memory limit per test 

256 megabytes

input standard input

output 

standard output

Vladik was bored on his way home and decided to play the following game. He took n cards and put them in a row in front of himself. Every card has a positive integer number not exceeding 8 written on it. He decided to find the longest subsequence of cards which satisfies the following conditions:

  • the number of occurrences of each number from 1 to 8 in the subsequence doesn't differ by more then 1 from the number of occurrences of any other number. Formally, if there are ck cards with number k on them in the subsequence, than for all pairs of integers  the condition |ci - cj| ≤ 1 must hold.
  • if there is at least one card with number x on it in the subsequence, then all cards with number x in this subsequence must form a continuous segment in it (but not necessarily a continuous segment in the original sequence). For example, the subsequence [1, 1, 2, 2] satisfies this condition while the subsequence [1, 2, 2, 1] doesn't. Note that [1, 1, 2, 2] doesn't satisfy the first condition.

Please help Vladik to find the length of the longest subsequence that satisfies both conditions.

Input

The first line contains single integer n (1 ≤ n ≤ 1000) — the number of cards in Vladik's sequence.

The second line contains the sequence of n positive integers not exceeding 8 — the description of Vladik's sequence.

Output

Print single integer — the length of the longest subsequence of Vladik's sequence that satisfies both conditions.

Examples
input
3
1 1 1
output
1
input
8
8 7 6 5 4 3 2 1
output
8
input
24
1 8 1 2 8 2 3 8 3 4 8 4 5 8 5 6 8 6 7 8 7 8 8 8
output
17
Note

In the first sample all the numbers written on the cards are equal, so you can't take more than one card, otherwise you'll violate the first condition.

题解:

先简单翻译一下,给一个序列,求最长的满足下面条件的子序列:

第一,相同数字连续;第二,每种数字出现次数之差不超过1

我们来考虑,由于每种数字出现都是连续的,因此一种数字一旦出现过,就不能再出现第二次。

所以我们可以用二进制来压每种数字是否出现过。

那么,每种数字出现次数的限制怎么处理?

这个东西不好说,所以我们考虑,如果有一种选择,使得每种数字都出现了至少a次,

那么一定会有其他选择,使得每种数字都出现了至少a-1次,a-2次……1次。

因此,我们就可以二分了!二分枚举每种数字至少出现的次数len,那么每种数字要么出现len次,要么出现len+1次。

对于某个len,定义状态数组f[i][j]为前i位中,数字出现状态为j时出现len+1次的数的最大种数

设tmp=max{f[i][(1<<8)-1}},那么显然,ans=tmp*(len+1)+(8-tmp)*len

在选取新的数字时,新数字要么出现len次,要么出现len+1次,

那么状态方程也显而易见了(刷表),更新对应位置的f值即可

最后注意特判:如果二分得到len=0,那么ans=出现的数的种数

代码见下:

 #include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int N=;
const int K=(<<)+;
int n,a[N],f[N][K],now[],bit[];//now数组用来记录转移位置
inline int max(int a,int b){return a>b?a:b;}
vector<int> loc[];
inline int judge(int len)
{
for(int i=;i<=;i++)now[i]=;
memset(f,0xaf,sizeof(f));
int inf=f[][];
f[][]=;
for(int i=;i<n;i++)
{
for(int j=;j<bit[];j++)
{
if(f[i][j]==inf)continue;
for(int k=;k<;k++)
{
if(j&bit[k])continue;
int pos=now[k+]+len-;
if(pos>=loc[k+].size())continue;
f[loc[k+][pos]][j|bit[k]]=max(f[loc[k+][pos]][j|bit[k]],f[i][j]);
pos++;
if(pos>=loc[k+].size())continue;
f[loc[k+][pos]][j|bit[k]]=max(f[loc[k+][pos]][j|bit[k]],f[i][j]+);
}
}
now[a[i]]++;
}
int ans=inf;
for(int i=;i<=n;i++)
ans=max(ans,f[i][bit[]-]);
if(ans==inf)return -;
return ans*(len+)+(-ans)*len;
}
int main()
{
bit[]=;for(int i=;i<=;i++)bit[i]=bit[i-]<<;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),loc[a[i]].push_back(i);
int l=,r=n/+,ans=;
while(l<=r)
{
int mi=(l+r)>>;
if(judge(mi)!=-)ans=judge(mi),l=mi+;
else r=mi-;
}
if(ans==)
{
ans=;
for(int i=;i<=;i++)
if(!loc[i].empty())ans++;
}
printf("%d",ans);
}

codeforces743E

[codeforces743E]Vladik and cards的更多相关文章

  1. CodeForces743E. Vladik and cards 二分+状压dp

    这个题我们可以想象成_---___-----__的一个水柱它具有一遍优一遍行的性质因此可以用来二分最小值len,而每次二分后我们都要验根,we可以把这个水柱想成我们在每个数段里取前一段的那个数后一段有 ...

  2. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #384 (Div. 2) E. Vladik and cards 状压dp

    E. Vladik and cards 题目链接 http://codeforces.com/contest/743/problem/E 题面 Vladik was bored on his way ...

  4. Vladik and cards

    Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  5. CF384 div2 E. Vladik and cards

    题意 给你一个的排列,求一个满足条件的最长子序列 每种数字的差小于等于,并且每种数字之内是连续的 解法 首先单纯认为用肯定不行的 所以应该考虑二分答案(所求长度具有二分性) 再用dp判断是否可行,这个 ...

  6. Vladik and cards CodeForces - 743E (状压)

    大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续. 正解是状压dp, 先二分转为判断[1,8]出现次数>=x ...

  7. 【codeforces 743E】Vladik and cards

    [题目链接]:http://codeforces.com/problemset/problem/743/E [题意] 给你n个数字; 这些数字都是1到8范围内的整数; 然后让你从中选出一个最长的子列; ...

  8. Codeforces Round #384 (Div. 2) //复习状压... 罚时爆炸 BOOM _DONE

    不想欠题了..... 多打打CF才知道自己智商不足啊... A. Vladik and flights 给你一个01串  相同之间随便飞 没有费用 不同的飞需要费用为  abs i-j 真是题意杀啊, ...

  9. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

随机推荐

  1. char和String 在jsp java代码中与jstl代码中的区别

    在 jsp java代码中 '0' ,这种代表char 在jstl中 '0' 会被解释为 String  所以也可以用  .equals  方法

  2. 开源工具 | 手游自动化框架GAutomator,新增iOS系统和UE4引擎支

    WeTest 导读 GAutomator是腾讯WeTest推出的手游自动化测试框架,已用于腾讯多个手游项目组的自动化测试. 1.GAutomator诞生背后 研究过手游自动化测试的同学都知道,虽然市场 ...

  3. stl源码分析之list

    本文主要分析gcc4.8版本的stl list的源码实现,与vector的线性空间结构不同,list的节点是任意分散的,节点之间通过指针连接,好处是在任何位置插入删除元素都只需要常数时间,缺点是不能随 ...

  4. Jmeter接口测试之Get请求

    [一] 在测试计划下面添加一个线程组---------->在线程组下面分别添加HTTP请求.响应断言.BeanShellPreProcessor.察看结果树.聚合报告等内容. [二] 将使用的协 ...

  5. Docker运行简单的Demo

    打开cmd.exe 输入docker run hello-world,本机没有这个images实例,将会从官方下载下载 运行一个简单的web实例,例如输入: docker run --name asp ...

  6. while read读取文本内容

    读取文件给 while 循环 方式一: exec <FILE while read line do cmd done 方式二: cat FILE_PATH |while read line do ...

  7. Gradle初使用

    我以前一直使用Maven来构建工程,这两天突然发现gradle也非常好用,记录一下自己使用gradle的过程. Gradle的下载与配置 本次选择下载的是gradle3.5版本,没选最新的gradle ...

  8. 第三次ScrumMeeting博客

    第三次ScrumMeeting博客 本次会议于10月27日(五)22时整在3公寓725房间召开,持续10分钟. 与会人员:刘畅.方科栋.窦鑫泽.张安澜. 1. 每个人的工作(有Issue的内容和链接) ...

  9. Linux下使用vim编辑C程序

    这几天在系统能力班自学linux,加上最近大数据课上开始使用linux,我在这里总结一下,linux下使用vim编辑c程序的一些问题. 大数据课上是直接使用micro来编辑的,我这里只是简单的说明一下 ...

  10. 复利计算器app发布

    复利计算器app发布 抱歉:由于无法实现服务端的持续开启,发布的app仅为简单的单机版,暂时舍弃了c/s版本的一些功能,如:投资动态管理功能. 应用详情博客:请点击这里 apk下载地址1(百度手机助手 ...