This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boosting algorithm - AdaBoost, which is actually an approximation of exponential loss via additive stage-forward modelling. What if we want to choose other loss function? Can we have a more generic algorithm that can apply to all loss function.

Gradient Descent

Friedman proposed another way to optimize the additive function- Gradient descent, same as the numerical optimization method used in neural network. Basically at each step we calculate the gradient against current additive function \(F_m(x)\) to first find the direction of loss reduction and then a line search is used to find the step length.

So far we have already mentioned 2 main components in Gradient Boosting machine:

  1. Boosting: \(F_m(x) = \sum \rho_m h(x;\alpha_m)\) final function is an additive model of multiple base learner.
  2. Optimization: Gradient descent is used as numeric optimization method.

There is one other important component, which we will cover later.

Gradient Boosting Basic

Here is the generic frame work of gradient Boosting algorithm.

Algorithm 1: Gradient_Boost

  1. \(F_0(x) = argmin \sum_i^N{L(y_i,p)}\)
  2. For m = 1 to M do :

A. $\hat{y_i} = - {[\frac{\partial{L(y_i, F(x_i)) }}{\partial{F(x_i ) } } ] } $ $ \text{ where \(F(x) = F_{m-1}(x)\)} $

B. \(a_m = argmin_{\alpha, \beta}\sum_i^N{[\hat{y_i} - \beta h(x_i;
\alpha)]^2}\)

C. \(\rho_m = argmin_{\rho}\sum_i^N{L(y_i, F_{m-1}(x_i) + \rho h(x_i; \alpha_m))}\)

D. $ F_m(x_i) = F_{m-1}(x_i) + \rho h(x_i; \alpha_m))$

  1. \(F_m(x_i)\) will be final prediction

Let's go through all the above steps one by one.

Step1 we initialize the additive model, usually we can initialize with 0.

Then at each iteration:

A. Calculate negative gradient of current additive function

B. Fit a base learner to approximate negative gradient (direction of loss reduction).

C. find optimal coefficient for above base learner (step length), by minimizing the loss function.

D. update the additive function with new base learner and coefficient.

Step B is very important in the algorithm. Because given \(x\) and current additive function \(F_{m-1}(x)\), for each \(x_i\) we will have a empirical gradient. However we don't want the model to over-fit the training data. That's why an approximation estimation is used. Above we use Least-squares-Loss to fit the base leaner to the negative gradient, because least-squares estimates conditional expectation - \(E(\hat{y}|x)\)

Next let's use 2 loss function as example:

Least-Squares, all steps follow above algorithm, and we can further specify 2(A) 2(B) 2(C) as following:

Algorithm 2: LS_Boost

  1. \(F_0(x) = argmin \sum_i^N{L(y_i,p)}\)
  2. For m = 1 to M do :

A. $\hat{y_i} = y_i - F(x_i) \text{ where \(F(x) = F_{m-1}(x)\)}$

B. \(a_m = argmin_{\alpha, \beta}\sum_i^N{[\hat{y_i} - \beta h(x_i;\alpha)]^2}\)

C. $\rho_m =\beta $

D. $ F_m(x_i) = F_{m-1}(x_i) + \rho h(x_i; \alpha_m))$

Here negative gradient is simply the current residual. Since we already use least-square regression to fit base learner to the residual, where we not only get the base learner but also the coefficient. Therefore step 2(c) is no longer needed.

Least-absolute-deviation, all steps follow above algorithm, and we can further specify 2(A) 2(B) 2(C) as following:

Algorithm 3: LAD_Boost

  1. \(F_0(x) = argmin \sum_i^N{L(y_i,p)}\)
  2. For m = 1 to M do :

A. $\hat{y_i} = sign( y_i - F(x_i) ) \text{ where \(F(x) = F_{m-1}(x)\)}$

B. \(a_m = argmin_{\alpha, \beta}\sum_i^N{[\hat{y_i} - \beta h(x_i;\alpha)]^2}\)

C.\(\rho_m = argmin_{\rho}\sum_i^N{ |\hat{y_i} - \rho h(x_i; \alpha_m)|}\)

D. $ F_m(x_i) = F_{m-1}(x_i) + \rho h(x_i; \alpha_m))$

Here negative gradient is the sign of residual. And as before we fit base learner to the sign via least-squares regression.

Boosting married Tree

Now is time to reveal the last component of Gradient Boosting Machine - using Regression Tree as base learner. Same as AdaBoost, Gradient Boosting have more attractive features when it uses regression tree as base learner.

Therefore we can further represent each base leaner as an additive model (we mentioned in the previous Decision Tree Post) like below

\[h(x_i; \{b_j, R_j\}_1^J) = \sum_{j=1}^J{b_j I(x \in R_j)}
\]

Instead of using linear regression, we fit a regression tree against negative gradient. With Least-square as loss function, \(b_j\) will the be average of gradient in each leaf.

We can further simplify this by combining \(b_j\) with coefficient \(\rho_m\), as following:

\[\begin{align}
F_m(x_i) &= F_{m-1}(x_i) + \rho\sum_{j=1}^J{b_{jm} I(x \in R_{jm})}\\
F_m(x_i) &= F_{m-1}(x_i) + \sum_{j=1}^J{\lambda_{jm} I(x \in R_{jm})}
\end{align}
\]

The above transformation shows that when we fit the regression tree, we only need the node split, not the leaf assignment. In other words we are fitting Unit Gradient.

Later given the sample in each leaf, we calculate the leaf assignment by minimizing the loss function within each leaf. This will return the same result as minimizing the loss function over all sample, because all leaves are disjoint.

\[\lambda_{jm} = argmin \sum_{x \in R_{jm}}{L(y_i, F_{m-1}(x_i) + \lambda)}
\]

This is also why each base learner (tree) needs to be a weak leaner. If the tree is deep enough that each leaf has only 1 sample, then we are just calculating empirical gradient of the training data (over-fitting).

From here we will use tree as default base learner, and let's go through all kinds of loss functions supported by Sklearn.

Sklean source code - loss function

Sklearn supports 7 loss function in total, 3 for classification and 4 for regression, see below

Type Loss Estimator
ClassificationLossFunction BinomialDeviance LogOddsEstimator
ClassificationLossFunction MultinomialDeviance PriorProbabilityEstimator
ClassificationLossFunction MultinomialDeviance PriorProbabilityEstimator
RegressionLossFunction LeastSquaresError MeanEstimator
RegressionLossFunction LeastAbsoluteError QuantileEstimator
RegressionLossFunction HuberLossFunction QuantileEstimator
RegressionLossFunction QuantileLossFunction QuantileEstimator

Here the Estimator calculates the prediction given training sample, including average, quantile(median), probability of each classes, or log-odds (\(\log p/1-p\)).

Each loss classes supports several methods, including calculating loss, negative gradient and update terminal regions.

For update_terminal_regions method, it first assign each sample to a leaf, perform line search to get leaf assignment and then update the prediction accordingly, see below:

class LossFunction(six.with_metaclass(ABCMeta, object)):
def update_terminal_regions(self, tree, X, y, residual, y_pred,
sample_weight, sample_mask,
learning_rate=1.0, k=0): terminal_regions = tree.apply(X) for leaf in np.where(tree.children_left == TREE_LEAF)[0]:
self._update_terminal_region(tree, masked_terminal_regions,
leaf, X, y, residual,
y_pred[:, k], sample_weight) y_pred[:, k] += (learning_rate
* tree.value[:, 0, 0].take(terminal_regions, axis=0))

Next let's take a deeper dive into all loss functions.

Regression

1. Least-squares (LS)

Algorithm 4: LS_TreeBoost

  1. \(F_0(x) = mean(y_i)\)
  2. For m = 1 to M do :

A. $\hat{y_i} = y_i - F(x_i) \text{ where \(F(x) = F_{m-1}(x)\)}$

B. \(\{R_{jm}\}_1^J = \text{J terminal node tree}(\{\hat{y_i}, x_i\}_1^N)\)

C. $\lambda_{jm} = mean_{x_i \in R_{jm}}{ y_i - F(x_i)} $

D. $ F_m(x_i) = F_{m-1}(x_i) + \sum_{j=1}^J \lambda_{jm} I(x_i \in R_{jm})$

Compare algorithm 4 with algorithm 2, the difference lies in how the negative gradient is estimated, linear regression vs. regression tree. And how the coefficient is calculated, regression coefficient vs. sample mean in each leaf. And one attractive of LS is that it can get leaf assignment directly from gradient approximation. Therefore in the class update_terminal_regions is directly called to update prediction.

class LeastSquaresError(RegressionLossFunction):
def init_estimator(self):
return MeanEstimator() def __call__(self, y, pred, sample_weight=None):
return np.mean((y - pred.ravel()) ** 2.0) def negative_gradient(self, y, pred, **kargs):
return y - pred.ravel() def update_terminal_regions(self, tree, X, y, residual, y_pred, learning_rate=1.0, k=0):
y_pred[:, k] += learning_rate * tree.predict(X).ravel()

2. Least-absolute-deviation (LAD)

Algorithm 5: LAD_TreeBoost

  1. \(F_0(x) = median(y_i)\)
  2. For m = 1 to M do :

A. $\hat{y_i} = sign( y_i - F(x_i) ) \text{ where \(F(x) = F_{m-1}(x)\)}$

B. \(\{R_{jm}\}_1^J = \text{J terminal node tree}(\{\hat{y_i}, x_i\}_1^N)\)

C. $\lambda_{jm} = median_{x_i \in R_{jm}}{ y_i - F(x_i)} $

D. $ F_m(x_i) = F_{m-1}(x_i) + \sum_{j=1}^J \lambda_{jm} I(x_i \in R_{jm})$

From algorithm implementation, we can see LAD is a very robust algorithm, which only use sample order to adjust the prediction accordingly. In _update_terminal_region, sample median in each leaf are used as leaf assignment.

class LeastAbsoluteError(RegressionLossFunction):
def init_estimator(self):
return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None):
return np.abs(y - pred.ravel()).mean() def negative_gradient(self, y, pred, **kargs):
pred = pred.ravel()
return 2.0 * (y - pred > 0.0) - 1.0 def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
sample_weight = sample_weight.take(terminal_region, axis=0)
diff = y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)
tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight, percentile=50)

3. Huber Loss (M-Regression)

Huber is between LS and LAD, which uses LS when the error is smaller than certain quantile and use LAD when the error exceeds certain quantile, see below:

\[\begin{align}
L(y,F) =
\begin{cases}
\frac{1}{2}(y-F)^2 & \quad & |y-F| \leq \delta \\
\delta(|y-F| - \delta/2) & \quad & |y-F| > \delta
\end{cases}
\end{align}
\]

where \(\delta\) is usually a certain quantile of absolute error. In additive model, we will use current additive prediction to estimate this quantile.

\[\delta = quantile_{\alpha}(|y-F|)
\]

Then we can further calculate negative gradient, and use a regression tree to approximate it.

\[\begin{align}
\tilde{y} =\begin{cases}
y-F \quad & |y-F| \leq \delta \\
\delta \cdot sign(y-F) \quad & |y-F| > \delta
\end{cases}
\end{align}
\]

In the end we need to minimize loss in each leaf, which can be a little tricky with Huber loss function. For LAD, optimal leaf value is the median, for LS, optimal leaf value is the mean. For Huber an approximation method is used, where we use the sample within \(\delta\) to adjust the overall median, like following:

\[\lambda_{jm}= \tilde{\gamma_{jm}} + \frac{1}{N_{jm}}\sum_{x \in R_{jm}} sign(\gamma_{m-1}(x_i) -\tilde{\gamma_{jm}} ) \cdot min(\delta_m, abs(\gamma_{m-1}(x_i) -\tilde{\gamma_{jm}}))
\]

where \(\tilde{\gamma_{jm}} = median(\gamma_{jm}) = median(y-F)\) is the LAD estimation - median of residual in each leaf.

Algorithm 6: M_TreeBoost

  1. \(F_0(x) = median(y_i)\)
  2. For m = 1 to M do :

A. \(r_{m-1} = y_i - F(x_i)\)

B. \(\delta_m = quantile_{\alpha}(|r_{m-1}|_1^N)\)

C. $

\tilde{y} =\begin{cases}

y-F \quad & |y-F| \leq \delta_m \

\delta_m \cdot sign(y-F) \quad & |y-F| > \delta_m

\end{cases} $

D. \(\{R_{jm}\}_1^J = \text{J terminal node tree}(\{\tilde{y}, x_i\}_1^N)\)

E. \(\lambda_{jm}= \tilde{\gamma_{jm}} + \frac{1}{N_{jm}}\sum_{x \in R_{jm}} sign(\gamma_{m-1}(x_i) -\tilde{\gamma_{jm}} ) \cdot min(\delta_m, abs(\gamma_{m-1}(x_i) -\tilde{\gamma_{jm}}))\)

F. $ F_m(x_i) = F_{m-1}(x_i) + \sum_{j=1}^J \lambda_{jm} I(x_i \in R_{jm})$

In application, I found Huber-Loss to be a very powerful loss function. Because it is not that sensitive to the outlier, but is able to capture more information than just sample order as LAD.

class HuberLossFunction(RegressionLossFunction):
def init_estimator(self):
return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None):
pred = pred.ravel()
diff = y - pred gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100)
gamma_mask = np.abs(diff) <= gamma sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0)
lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0))
loss = (sq_loss + lin_loss) / y.shape[0] return loss def negative_gradient(self, y, pred, sample_weight=None, **kargs):
pred = pred.ravel()
diff = y - pred gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100)
gamma_mask = np.abs(diff) <= gamma residual = np.zeros((y.shape[0],), dtype=np.float64)
residual[gamma_mask] = diff[gamma_mask]
residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask])
self.gamma = gamma
return residual def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
sample_weight = sample_weight.take(terminal_region, axis=0)
gamma = self.gamma
diff = (y.take(terminal_region, axis=0)
- pred.take(terminal_region, axis=0))
median = _weighted_percentile(diff, sample_weight, percentile=50)
diff_minus_median = diff - median
tree.value[leaf, 0] = median + np.mean(
np.sign(diff_minus_median) *
np.minimum(np.abs(diff_minus_median), gamma))

Classification

1. 2-class classification

For binomial classification, our calculation below will be slightly different from Freud's paper. Because Sklearn use \(y \in \{0,1\}\), while in Freud's paper \(y \in \{-1,1\}\) is used. Of course, whichever you use, you should get the same result. You need to make sure that your calculation is consistent. Relevant bug was spotted in Sklearn before.

Do you still recall how is the binomial log-likelihood defined? We define current prediction as log-odds.

\[\begin{align}
F & = \log(\frac{P(y=1|x)}{P(y=0|x)}) \\
P &= \frac{1}{1+e^{-F}} \\
\end{align}
\]

And use above to calculate negative log-likelihood function, we get following

\[\begin{align}
L(y,F) & = - E(y\log{p} + (1-y)log{(1-p)} ) \\
& = - E( y\log{\frac{p}{1-p}} + \log({1-p}) ) \\
& = - E( yF - \log{(1+e^F)} )
\end{align}
\]

The negative gradient is below, I also give a general version, which is in line with later k-class regression

\[\begin{align}
\tilde{y} & = y - \frac{1}{1+ e^{-,F}} = y - \sigma(F) = y - p
\end{align}
\]

In the end we calculate leaf assignment by minimizing the loss in each leaf

\[\lambda_{jm} = argmin \sum_{x \in R_{jm}} - E( yF - \log{(1+e^F)} )
\]

There is no close solution to above function, a second-order Newton Raphson is used to approximate

Quick Note - Newton Raphson

\(f(x + \epsilon) \approx f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2\) 2nd order Taylor expansion

To get optimal value, \(f'(x) = 0\)

we will get \(\epsilon = -\frac{f'(x)}{f''(x)}\)

\[\begin{align}
\lambda_{jm} & = \sum_{x \in R_{jm}}(y - \frac{1}{1+ e^{-F}} )/(\frac{1}{1+ e^{-F}} \cdot \frac{1}{1+ e^{F}}) \\
& = \sum_{x \in R_{jm}} \tilde{y} / ( (y-\tilde{y}) \cdot (1-y+\tilde{y}) )
\end{align}
\]

Algorithm 7: L2_TreeBoost

  1. \(F_0(x) = 0\)
  2. For m = 1 to M do :

A. $\tilde{y} = y - \frac{1}{1+ e^{-F}} \text{ where \(F(x) = F_{m-1}(x)\)}$

B. \(\{R_{jm}\}_1^J = \text{J terminal node tree}(\{\hat{y_i}, x_i\}_1^N)\)

C. $\lambda_{jm} = \sum_{x \in R_{jm}} \tilde{y} / ( (y-\tilde{y}) \cdot (1-y+\tilde{y})) $

D. $ F_m(x_i) = F_{m-1}(x_i) + \sum_{j=1}^J \lambda_{jm} I(x_i \in R_{jm})$

class BinomialDeviance(ClassificationLossFunction):
def init_estimator(self):
return LogOddsEstimator() def __call__(self, y, pred, sample_weight=None):
pred = pred.ravel()
return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) #logaddexp(0, v) == log(1.0 + exp(v)) def negative_gradient(self, y, pred, **kargs):
return y - expit(pred.ravel()) # sigmoid function def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, pred, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
residual = residual.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual)
denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual)) tree.value[leaf, 0, 0] = numerator / denominator

2. k-class classification

Loss function is defined in the same ways with multiclass:

\[L(y,F) = -\sum_{k=1}^K y_k \log p_k(x)
\]

where \(p_k(x) = exp(F_k(x))/\sum_{l=1}^Kexp(F_l(x))\)

Therefore we will get the loss function nad negative gradient as following:

\[\begin{align}
L(y,F) &= -\sum_{k=1}^K y_kF_k(x) - log(\sum_{l=1}^Kexp(F_l(x)))\\
\tilde{y_i} &= y_{ki} - p_{k,m-1}(x_i)
\end{align}
\]

Algorithm 8: LK_TreeBoost

  1. \(F_0(x) = 0\)
  2. For m = 1 to M do :

A. \(p_k(x) = exp(F_k(x))/\sum_{l=1}^Kexp(F_l(x))\)

B. \(\tilde{y_i} = y_i - p_k(x_i)\)

B. \(\{R_{jm}\}_1^J = \text{J terminal node tree}(\{\hat{y_i}, x_i\}_1^N)\)

C. $\lambda_{jm} = \sum_{x \in R_{jm}} \tilde{y} / ( (y-\tilde{y}) \cdot (1-y+\tilde{y})) $

D. $ F_m(x_i) = F_{m-1}(x_i) + \sum_{j=1}^J \lambda_{jm} I(x_i \in R_{jm})$

sklearn source code - GBM Framework

Base Learner

Base learner in each iteration is trained via fit_stage method. A Decision Tree is trained to approximate negative gradient given current additive function. And then leaf assignment is calculated to minimize loss function in each leaf.

def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc=None, X_csr=None):
assert sample_mask.dtype == np.bool
loss = self.loss_
original_y = y for k in range(loss.K):
residual = loss.negative_gradient(y, y_pred, k=k, sample_weight=sample_weight)
tree = DecisionTreeRegressor(
criterion=self.criterion,
splitter='best',
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
min_weight_fraction_leaf=self.min_weight_fraction_leaf,
min_impurity_decrease=self.min_impurity_decrease,
min_impurity_split=self.min_impurity_split,
max_features=self.max_features,
max_leaf_nodes=self.max_leaf_nodes,
random_state=random_state,
presort=self.presort) tree.fit(X, residual, sample_weight=sample_weight,
check_input=False, X_idx_sorted=X_idx_sorted) loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred,sample_weight, sample_mask, self.learning_rate, k=k)
self.estimators_[i, k] = tree return y_pred

Boosting

Boosting is performed upon above base learner via fit_stages method. In each iteration a new base learner is trained given current additive function.

n_estimators specifies the number of iteration (# of base learner).

subsample indicates the split between training sample and validation sample. Base learner is trained against training sample, and we use untouched validation sample for performance.

def _fit_stages(self, X, y, y_pred, sample_weight, random_state,
begin_at_stage=0, monitor=None, X_idx_sorted=None):
n_samples = X.shape[0]
do_oob = self.subsample < 1.0
sample_mask = np.ones((n_samples, ), dtype=np.bool)
n_inbag = max(1, int(self.subsample * n_samples))
loss_ = self.loss_ i = begin_at_stage
for i in range(begin_at_stage, self.n_estimators):
if do_oob:
sample_mask = _random_sample_mask(n_samples, n_inbag,
random_state) old_oob_score = loss_(y[~sample_mask],
y_pred[~sample_mask],
sample_weight[~sample_mask]) y_pred = self._fit_stage(i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc, X_csr) if do_oob:
self.train_score_[i] = loss_(y[sample_mask],
y_pred[sample_mask], sample_weight[sample_mask])
self.oob_improvement_[i] = (
old_oob_score - loss_(y[~sample_mask],
y_pred[~sample_mask], sample_weight[~sample_mask])) return i + 1

Reference

  1. J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
  2. J. Friedman, Stochastic Gradient Boosting, 1999
  3. T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.
  4. Bishop, Pattern Recognition and Machine Learning 2006
  5. scikit-learn tutorial http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Tree - Gradient Boosting Machine with sklearn source code的更多相关文章

  1. Tree - AdaBoost with sklearn source code

    In the previous post we addressed some issue of decision tree, including instability, lack of smooth ...

  2. Tree - Decision Tree with sklearn source code

    After talking about Information theory, now let's come to one of its application - Decision Tree! No ...

  3. 论文笔记:GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE

    Boost是集成学习方法中的代表思想之一,核心的思想是不断的迭代.boost通常采用改变训练数据的概率分布,针对不同的训练数据分布调用弱学习算法学习一组弱分类器.在多次迭代的过程中,当前次迭代所用的训 ...

  4. Python中Gradient Boosting Machine(GBM)调参方法详解

    原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...

  5. 机器学习--Gradient Boosting Machine(GBM)调参方法详解

    一.GBM参数 总的来说GBM的参数可以被归为三类: 树参数:调节模型中每个决策树的性质 Boosting参数:调节模型中boosting的操作 其他模型参数:调节模型总体的各项运作 1.树参数 现在 ...

  6. Greedy Function Approximation:A Gradient Boosting Machine

    https://statweb.stanford.edu/~jhf/ftp/trebst.pdf page10 90% to 95% of the observations were often de ...

  7. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  8. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  9. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

随机推荐

  1. Android 心跳呼吸动画

    废话少说,看东西 一个很简单的心跳呼吸的动画,几行代码搞定: 代码: private ImageView ivHart; //图片 AlphaAnimation alphaAnimation = nu ...

  2. Oracle锁处理、解锁方法

    1.查询锁情况 select sid,serial#,event,BLOCKING_SESSION from v$session where event like '%TX%'; 2.根据SID查询具 ...

  3. http协议的总结

    HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统,其主要特点概括如下: 1.支持客户/服务器模式. 2.简单快速:客户向服务器请求服务时,只需传送请求方法和 ...

  4. svn配置教程

    检查svn是否安装rpm -aq subversion如果没有安装yum安装yum install -y subversion 建立svn版本数据库存储根目录mkdir -p /application ...

  5. Redis数据库 : 基础

    设置密码: /etc/redis/redis.conf 文件把 requirepass 取消注释并设置密码 取消只能本地登录的bind 同上面的配置文件 把 bind一行注释掉 带密码登录: redi ...

  6. VCC、VDD、VSS以及VBAT的区别

    在STM32 的学习中,发现有几种看起来相关的名称,分别是VCC.VDD.VSS.VBAT,在经过搜索查找之后,总结如下: 1.VCC的C是Circuit的意思,是指整个供电回路的电压, 也有人说VC ...

  7. 盒模型與BFC

    盒模型 基本概念 什么是 CSS 盒模型?相信大部分人都能答出这个问题来,那就是 标准模型 + IE 模型 标准模型: IE 模型 很明显 在 标准盒子模型中,width 和 height 指的是内容 ...

  8. Python enumerate()方法

    for循环中如果要获取当前元素的索引值,一个方法是定义一个计数器,每次取值的时候将这个值加一,如果是列表的话可以用index()函数,而python中有一个比较简洁的方法而已直接获得索引值,并可以方便 ...

  9. 解决 vboxdrv.sh: failed: Cannot change group vboxusers for device /dev/vboxdrv.

    来自:https://blog.csdn.net/su_cicada/article/details/86773043 virtualbox 报错 ,看提示让执行以下 sudo /sbin/vboxc ...

  10. 先进先出算法(FIFO)——页面置换

    原创 最近操作系统实习,写了先进先出算法(FIFO)的代码来实现页面置换. 题目阐述如下: 设计四:页面置换 设计目的: 加深对请求页式存储管理实现原理的理解,掌握页面置换算法. 设计内容: 设计一个 ...