Problem Description
Kids in kindergarten enjoy playing a game called Hawk-and-Chicken. But there always exists a big problem: every kid in this game want to play the role of Hawk. 

So the teacher came up with an idea: Vote. Every child have some nice handkerchiefs, and if he/she think someone is suitable for the role of Hawk, he/she gives a handkerchief to this kid, which means this kid who is given the handkerchief win the support. Note
the support can be transmitted. Kids who get the most supports win in the vote and able to play the role of Hawk.(A note:if A can win

support from B(A != B) A can win only one support from B in any case the number of the supports transmitted from B to A are many. And A can't win the support from himself in any case.

If two or more kids own the same number of support from others, we treat all of them as winner.

Here's a sample: 3 kids A, B and C, A gives a handkerchief to B, B gives a handkerchief to C, so C wins 2 supports and he is choosen to be the Hawk.
 
Input
There are several test cases. First is a integer T(T <= 50), means the number of test cases.

Each test case start with two integer n, m in a line (2 <= n <= 5000, 0 <m <= 30000). n means there are n children(numbered from 0 to n - 1). Each of the following m lines contains two integers A and B(A != B) denoting that the child numbered A give a handkerchief
to B.
 
Output
For each test case, the output should first contain one line with "Case x:", here x means the case number start from 1. Followed by one number which is the totalsupports the winner(s) get. 

Then follow a line contain all the Hawks' number. The numbers must be listed in increasing order and separated by single spaces.
 
Sample Input
2
4 3
3 2
2 0
2 1 3 3
1 0
2 1
0 2
 
Sample Output
Case 1: 2
0 1
Case 2: 2
0 1 2
 
题意:选出人当老鹰:类似A->B,B->C=>A->C的,最后谁得到的多就选谁。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
typedef long long LL;
using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=5000+100;
const int maxm=100000+10;
struct node{
int u,v;
int next;
}e[maxm],e1[maxn];
int head[maxn],cntE,cntF;
int DFN[maxn],low[maxn],h[maxn];
int s[maxm],top,index,cnt;
int belong[maxn],instack[maxn];
int dp[maxn],in[maxn],vis[maxn];
int num[maxn];
int n,m;
void init()
{
top=cntE=cntF=0;
index=cnt=0;
CLEAR(DFN,0);
CLEAR(head,-1);
CLEAR(instack,0);
}
void addedge(int u,int v)
{
e[cntE].u=u;e[cntE].v=v;
e[cntE].next=head[u];
head[u]=cntE++;
}
void Tarjan(int u)
{
DFN[u]=low[u]=++index;
instack[u]=1;
s[top++]=u;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!DFN[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],DFN[v]);
}
int v;
if(DFN[u]==low[u])
{
cnt++;
do{
v=s[--top];
belong[v]=cnt;
instack[v]=0;
}while(u!=v);
}
}
int dfs(int x)
{
int ans=num[x];
for(int i=h[x];i!=-1;i=e1[i].next)
{
int v=e1[i].v;
if(!vis[v])
{
vis[v]=1;
ans+=dfs(v);
}
}
return ans;
}
void work()
{
REP(i,n)
if(!DFN[i]) Tarjan(i);
if(cnt==1)
{
printf("%d\n",n-1);
REP(i,n)
printf(i==n-1?"%d\n":"%d ",i);
return ;
}
CLEAR(num,0);
CLEAR(dp,0);
CLEAR(in,0);
CLEAR(h,-1);
REP(i,n)//马丹,这里卡了我两天
num[belong[i]]++;
REP(k,n)
{
for(int i=head[k];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(belong[k]!=belong[v])//反向建边dfs.
{
// cout<<"666 "<<endl;
e1[cntF].u=belong[v];
e1[cntF].v=belong[k];
e1[cntF].next=h[belong[v]];
h[belong[v]]=cntF++;
in[belong[k]]++;
}
}
}
REPF(i,1,cnt)
{
if(!in[i])
{
CLEAR(vis,0);
dp[i]=dfs(i)-1;
}
}
int ans=0;
REPF(i,1,cnt)
ans=max(ans,dp[i]);
printf("%d\n",ans);
int flag=0;
REP(i,n)
{
if(dp[belong[i]]==ans)
{
if(!flag)
printf("%d",i),flag=1;
else
printf(" %d",i);
}
}
printf("\n");
}
int main()
{
int t,u,v;
int cas=1;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
printf("Case %d: ",cas++);
work();
}
return 0;
}

HDU 3639 Hawk-and-Chicken(Tarjan缩点+反向DFS)的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  3. hdu 3836 Equivalent Sets(tarjan+缩点)

    Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...

  4. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  5. HDU 3639 Hawk-and-Chicken(强连通缩点+反向建图)

    http://acm.hdu.edu.cn/showproblem.php?pid=3639 题意: 有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则 ...

  6. HDU 3639 Hawk-and-Chicken(强连通分量+缩点)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013480600/article/details/32140501 HDU 3639 Hawk-a ...

  7. HDU 3639 Hawk-and-Chicken (强连通缩点+DFS)

    <题目链接> 题目大意: 有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则:投票具有传递性,A支持B,B支持C,那么C获得2票(A.B共两 ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. HDU 3639 Hawk-and-Chicken(良好的沟通)

    HDU 3639 Hawk-and-Chicken 题目链接 题意:就是在一个有向图上,满足传递关系,比方a->b, b->c,那么c能够得到2的支持,问得到支持最大的是谁,而且输出这些人 ...

随机推荐

  1. c# winfrom DataGridView使行高不可改变,使列头高度不可改变,

    // 禁止用户改变DataGridView1的所有列的列宽 //DataGridView1.AllowUserToResizeColumns = false; //禁止用户改变DataGridView ...

  2. Objective-C该Protocol

    Objective-C该Protocol Protocol 简单来说就是一系列方法的列表,当中声明的方法能够被不论什么类实现,这样的模式一般称为(delegation)模式 在iOS中和OS X中,A ...

  3. VisualStudioOnline协同工作流程

    VisualStudioOnline协同工作流程 项目负责人登陆自己的vsonline新建项目就不多说了. 直接从邀请队友开始 项目负责人操作 被邀请的邮箱必须是微软的邮箱(也就是可以登录visual ...

  4. 安装numpy、nltk问题汇总

    系统环境是win7(64bit)+python3.4(64bit)+numpy1.82+vs2012 1.假设用sourceforge上编译好的32bit的exe安装,会提示'python versi ...

  5. Linus Torvalds来自开发商的消息:成就,不定

    于IEEE 计算机学会在接受记者采访时, Linux父亲解释了他的哲学了操作系统的成功背后.Linus Torvalds在接受IEEE采访计算机学会谈过:"Linux这项新技术是不是它的,但 ...

  6. Dapper的使用

    轻量型ORM框架Dapper的使用 /// <summary> /// 查询操作 /// </summary> /// <typeparam name="T&q ...

  7. Spring Framework 下载链接_现在有空

    下载链接:http://repo.spring.io/libs-release-local/org/springframework/spring/ 点击打开链接 包括Spring的各个版本号: 3.2 ...

  8. 【Java】【Flume】Flume-NG源代码分析的启动过程(两)

    本节分析配置文件的解析,即PollingPropertiesFileConfigurationProvider.FileWatcherRunnable.run中的eventBus.post(getCo ...

  9. DeviceIoControl的使用说明

    应用程序和驱动程序的通信过程是:应用程序使用CreateFile函数打开设备,然后用DeviceIoControl与驱动程序进行通信,包含读和写两种操作.还能够用ReadFile读数据用WriteFi ...

  10. C#版的抓包软件

    C#版的抓包软件   [创建时间:2015-09-10 22:37:04] NetAnalyzer下载地址 不好意思啊,NetAnalyzer停更有点长了,今天继续填坑^&^ NetAnaly ...