主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3103

Problem Description
The tiny country of Waterlogged is protected by a series of levees that form a quadrilateral as shown below:










The quadrilateral is defined by four vertices. The levees partition the country into four quadrants. Each quadrant is identified by a pair of vertices representing the outside edge of that quadrant. For example, Quadrant 1 shown below is defined by the points
(x1, y1) and (x2, y2) .










It happens very often that the country of Waterlogged becomes flooded, and the levees need to be reinforced, but their country is poor and they have limited resources. They would like to be able to reinforce those levees that encompass the largest area first,
then the next largest second, then the next largest third, and the smallest area fourth.



Help Waterlogged identify which quadrants are the largest, and the length of the levees around them.
 
Input
here will be several sets of input. Each set will consist of eight real numbers, on a single line. Those numbers will represent, in order:





X1 Y1 X2 Y2 X3 Y3 X4 Y4





The four points are guaranteed to form a convex quadrilateral when taken in order -- that is, there will be no concavities, and no lines crossing. Every number will be in the range from -1000.0 to 1000.0 inclusive. No Quadrant will have an area or a perimeter
smaller than 0.001. End of the input will be a line with eight 0.0's.
 
Output
For each input set, print a single line with eight floating point numbers. These represent the areas and perimeters of the four Quadrants, like this:





A1 P1 A2 P2 A3 P3 A4 P4





Print them in order from largest area to smallest -- so A1 is the largest area. If two Quadrants have the same area when rounded to 3 decimal places, output the one with the largest perimeter first. Print all values with 3 decimal places of precision (rounded).
Print spaces between numbers. Do not print any blank lines between outputs.
 
Sample Input
1 2 1 5 5 2 2 0
3.5 2.2 4.8 -9.6 -1.2 -4.4 -8.9 12.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 
Sample Output
5.100 11.459 3.400 9.045 0.900 6.659 0.600 4.876
44.548 38.972 21.982 25.997 20.342 38.374 10.038 19.043
 
Source

题意:

给出四个点,连接对角线后,分为四个象限。依照面积大小依次输出,假设面积同样则依照周长大小输出(注意:比較面积是否同样是比較保留了三位后是否同样);

代码例如以下:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
const double eps = 1e-5;
const double PI = acos(-1.0); struct point
{
double x, y;
};
struct gao
{
double mz,zc;
};
struct gao gg[10]; bool cmp(gao a,gao b)
{
if(a.mz!=b.mz)
return a.mz>b.mz;
return a.zc>b.zc;
}
double xmult(double x1,double y1,double x2,double y2,double x0,double y0)
{
return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
} //判两点在线段同側,点在线段上返回0
int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1.x,l1.y,p1.x,p1.y,l2.x,l2.y)*xmult(l1.x,l1.y,p2.x,p2.y,l2.x,l2.y)>0;
} //两点距离
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
//两线段的交点
point intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
} //三点面积
double aera(point a,point b,point c)
{
double aa,bb,cc,q;
aa=dis(c,b);
bb=dis(a,c);
cc=dis(b,a);
q=(aa+bb+cc)/2;
double h=sqrt(q*(q-aa)*(q-bb)*(q-cc));
h=(int)(h*1000+0.5);
return h*0.001;
} //三点周长
double get_zc(point a,point b,point c)
{
double aa,bb,cc,q;
aa=dis(c,b);
bb=dis(a,c);
cc=dis(b,a);
q=(aa+bb+cc);
return q;
} int main()
{
int i;
double x1,y1,x2,y2,x3,y3,x4,y4;
point a,b,c,d,e;
while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4)!=EOF)
{
if(x1==0 && y1==0 && x2==0 && y2==0 && x3==0 && y3==0 && x4==0 && y4==0)
break;
a.x=x1;
a.y=y1;
b.x=x2;
b.y=y2;
c.x=x3;
c.y=y3;
d.x=x4;
d.y=y4;
if(same_side(a, b, c,d)==0)
e = intersection(d,c,a,b);
else if(same_side(d, b, c, a)==0)
e = intersection(d,b,c,a);
else
e = intersection(b,c,d,a);
gg[0].mz=aera(a,b,e);
gg[1].mz=aera(b,c,e);
gg[2].mz=aera(c,d,e);
gg[3].mz=aera(a,d,e);
gg[0].zc=get_zc(a,b,e);
gg[1].zc=get_zc(b,c,e);
gg[2].zc=get_zc(c,d,e);
gg[3].zc=get_zc(a,d,e);
sort(gg,gg+4,cmp);
for(i=0; i<3; i++)
printf("%.3lf %.3lf ",gg[i].mz,gg[i].zc);
printf("%.3lf %.3lf\n",gg[i].mz,gg[i].zc);
}
return 0;
}
/*
2 0 2 2 0 2 0 0
*/

版权声明:本文博主原创文章,博客,未经同意不得转载。

HDU 3103 Shoring Up the Levees(计算几何 搜寻区域)的更多相关文章

  1. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 6697 Closest Pair of Segments (计算几何 暴力)

    2019 杭电多校 10 1007 题目链接:HDU 6697 比赛链接:2019 Multi-University Training Contest 10 Problem Description T ...

  4. HDU 1392 Surround the Trees(凸包*计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392 这里介绍一种求凸包的算法:Graham.(相对于其它人的解释可能会有一些出入,但大体都属于这个算 ...

  5. HDU 3264 Open-air shopping malls (计算几何-圆相交面积)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...

  6. hdu 1392:Surround the Trees(计算几何,求凸包周长)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. hdu 1140:War on Weather(计算几何,水题)

    War on Weather Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  8. hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)

    Mirror and Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. hdu 1756:Cupid's Arrow(计算几何,判断点在多边形内)

    Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

随机推荐

  1. 使用 DBMS_REPAIR 修复坏块

    对于Oracle数据块物理损坏的情形,在我们有备份的情况下可以直接使用备份来恢复.对于通过备份恢复,Oracel为我们提供了很多种方式,冷备,基于用户管理方式,RMAN方式等等.对于这几种方式我们需要 ...

  2. 一个带动画的页面底部的TabBar的实现

    有时有这样一个需求,页面底部有几个图标能够点击,假设一个screenWidth显示不下这些图标,则这一列图标最后一个是more,点击more,能够通过动画展示两列图标 这样来增加layout中: &l ...

  3. Automatically generate serial number in abap

    流水号的产生:   在ABAP开发中,很多地方都需要按照自己的规则生成流水号,把这些流水号保存进透明表,作为唯一标示. 一. 系统中设定流水号 使用T-Code SNRO来创建一个流水号标识对象. 输 ...

  4. linux下使用vi操作

    ESC : 进入命令模式 linux下使用vi后,怎样跳转到文件结尾 pagedown键连续按 虽然我也这么用,但还是太笨了.问了高手,方法是按shift+g,另外,到文件开头是gg.   linux ...

  5. hdu 4107当卡段树

    其核心思想是记录最大的节点值和最低值,假设max<p要么min>=p时间,在节点只变化add值,不要子树遍历:否则,就往子树递归. #include<iostream> #in ...

  6. Holding Bin-Laden Captive!(杭电1085)(母函数)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  7. Effective C++规定45 额外的代码

    这部分是额外的代码博客,关键45术语思想已经实现. #include<iostream> using namespace std; template<typename T> c ...

  8. 加入指数(IOS开发)

    该指数是用来协助查询. 原则上: - 索引的标题是不完全一样的标题显示: - 指数应该具有一定的代表性,它可表示一组数据: - 假设索引列表视图.在一般情况下不再使用扩展视图. (easy指向) 会又 ...

  9. Mybatis数据操作

    Maven 工程下 Spring MVC 站点配置 (二) Mybatis数据操作   详细的Spring MVC框架搭配在这个连接中: Maven 工程下 Spring MVC 站点配置 (一) M ...

  10. (转)FFMPEG解码流程

    http://www.douban.com/note/228831821/ FFMPEG解码流程:     1. 注册所有容器格式和CODEC: av_register_all()     2. 打开 ...