HDU 3103 Shoring Up the Levees(计算几何 搜寻区域)
主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3103
The quadrilateral is defined by four vertices. The levees partition the country into four quadrants. Each quadrant is identified by a pair of vertices representing the outside edge of that quadrant. For example, Quadrant 1 shown below is defined by the points
(x1, y1) and (x2, y2) .
It happens very often that the country of Waterlogged becomes flooded, and the levees need to be reinforced, but their country is poor and they have limited resources. They would like to be able to reinforce those levees that encompass the largest area first,
then the next largest second, then the next largest third, and the smallest area fourth.
Help Waterlogged identify which quadrants are the largest, and the length of the levees around them.
X1 Y1 X2 Y2 X3 Y3 X4 Y4
The four points are guaranteed to form a convex quadrilateral when taken in order -- that is, there will be no concavities, and no lines crossing. Every number will be in the range from -1000.0 to 1000.0 inclusive. No Quadrant will have an area or a perimeter
smaller than 0.001. End of the input will be a line with eight 0.0's.
A1 P1 A2 P2 A3 P3 A4 P4
Print them in order from largest area to smallest -- so A1 is the largest area. If two Quadrants have the same area when rounded to 3 decimal places, output the one with the largest perimeter first. Print all values with 3 decimal places of precision (rounded).
Print spaces between numbers. Do not print any blank lines between outputs.
1 2 1 5 5 2 2 0
3.5 2.2 4.8 -9.6 -1.2 -4.4 -8.9 12.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5.100 11.459 3.400 9.045 0.900 6.659 0.600 4.876
44.548 38.972 21.982 25.997 20.342 38.374 10.038 19.043
题意:
给出四个点,连接对角线后,分为四个象限。依照面积大小依次输出,假设面积同样则依照周长大小输出(注意:比較面积是否同样是比較保留了三位后是否同样);
代码例如以下:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
const double eps = 1e-5;
const double PI = acos(-1.0); struct point
{
double x, y;
};
struct gao
{
double mz,zc;
};
struct gao gg[10]; bool cmp(gao a,gao b)
{
if(a.mz!=b.mz)
return a.mz>b.mz;
return a.zc>b.zc;
}
double xmult(double x1,double y1,double x2,double y2,double x0,double y0)
{
return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
} //判两点在线段同側,点在线段上返回0
int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1.x,l1.y,p1.x,p1.y,l2.x,l2.y)*xmult(l1.x,l1.y,p2.x,p2.y,l2.x,l2.y)>0;
} //两点距离
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
//两线段的交点
point intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
} //三点面积
double aera(point a,point b,point c)
{
double aa,bb,cc,q;
aa=dis(c,b);
bb=dis(a,c);
cc=dis(b,a);
q=(aa+bb+cc)/2;
double h=sqrt(q*(q-aa)*(q-bb)*(q-cc));
h=(int)(h*1000+0.5);
return h*0.001;
} //三点周长
double get_zc(point a,point b,point c)
{
double aa,bb,cc,q;
aa=dis(c,b);
bb=dis(a,c);
cc=dis(b,a);
q=(aa+bb+cc);
return q;
} int main()
{
int i;
double x1,y1,x2,y2,x3,y3,x4,y4;
point a,b,c,d,e;
while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4)!=EOF)
{
if(x1==0 && y1==0 && x2==0 && y2==0 && x3==0 && y3==0 && x4==0 && y4==0)
break;
a.x=x1;
a.y=y1;
b.x=x2;
b.y=y2;
c.x=x3;
c.y=y3;
d.x=x4;
d.y=y4;
if(same_side(a, b, c,d)==0)
e = intersection(d,c,a,b);
else if(same_side(d, b, c, a)==0)
e = intersection(d,b,c,a);
else
e = intersection(b,c,d,a);
gg[0].mz=aera(a,b,e);
gg[1].mz=aera(b,c,e);
gg[2].mz=aera(c,d,e);
gg[3].mz=aera(a,d,e);
gg[0].zc=get_zc(a,b,e);
gg[1].zc=get_zc(b,c,e);
gg[2].zc=get_zc(c,d,e);
gg[3].zc=get_zc(a,d,e);
sort(gg,gg+4,cmp);
for(i=0; i<3; i++)
printf("%.3lf %.3lf ",gg[i].mz,gg[i].zc);
printf("%.3lf %.3lf\n",gg[i].mz,gg[i].zc);
}
return 0;
}
/*
2 0 2 2 0 2 0 0
*/
版权声明:本文博主原创文章,博客,未经同意不得转载。
HDU 3103 Shoring Up the Levees(计算几何 搜寻区域)的更多相关文章
- HDU 5572 An Easy Physics Problem (计算几何+对称点模板)
HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 6697 Closest Pair of Segments (计算几何 暴力)
2019 杭电多校 10 1007 题目链接:HDU 6697 比赛链接:2019 Multi-University Training Contest 10 Problem Description T ...
- HDU 1392 Surround the Trees(凸包*计算几何)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392 这里介绍一种求凸包的算法:Graham.(相对于其它人的解释可能会有一些出入,但大体都属于这个算 ...
- HDU 3264 Open-air shopping malls (计算几何-圆相交面积)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...
- hdu 1392:Surround the Trees(计算几何,求凸包周长)
Surround the Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu 1140:War on Weather(计算几何,水题)
War on Weather Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 1756:Cupid's Arrow(计算几何,判断点在多边形内)
Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
随机推荐
- 第一章 andrid visdio 安装
第一章 andrid visdio 安装与环境搭建 一.Android Studio简介 Android Studio是Google新发布的Android应用程序开发环境,Android Stud ...
- Python学习入门基础教程(learning Python)--2.3.1 Python传参函数设计
本节主要讨论设计传递多个参数子函数的设计方法. 在2.3节里我们讨论了如何自己设计一个带参数的子函数的设计方法,现在我们研究一下如何传递两个及以上参数的设计方法. 函数为何要带参数呢?其实原因很简单, ...
- CSS计数器妙用
做web的经常会遇到类似排行榜的需求, 特别是要求前n名的样式和后面人不一样. 通常大多数人对于这个需求的做法都是在后端处理好排名名次, 在前端填入内容, 然后针对前n名做特殊的样式处理. 但是这样有 ...
- CCNA CCNP CCIE所有实验名称完整版
实验1:通过Console端口访问Cisco路由器 实验2:通过Telnet访问Cisco路由器 实验3:配置终端服务器 实验4:通过浏览器访问路由器 实验5:模式切换.上下文帮助及查看有关信 ...
- Vb.net/VB 声明API功能父窗口功能
回想第一次敲房费,他说自己是api函数实现父窗口及其子窗口最小化的功能.现在再次遇到,自己就在思考,能不能继续使用API函数呢?答案当然是Of Course! 事实上细致看两者并没有多大的差别,先看看 ...
- hdu1869六度分离,spfa实现求最短路
就是给一个图.假设随意两点之间的距离都不超过7则输出Yes,否则 输出No. 因为之前没写过spfa,无聊的试了一下. 大概说下我对spfa实现的理解. 因为它是bellmanford的优化. 所以之 ...
- SIP基本呼叫
我们首先来看下主要的呼叫流程. INVITEsip:69690067@beijing.chinamobile.com;user=phone SIP/2.0 From:"+8610696900 ...
- linux下查找某个文件
参考http://blog.csdn.net/gray13/article/details/6365654 一.通过文件名查找法: 举例说明,假设你忘记了httpd.conf这个文件在系统的哪个目录 ...
- Android调试优化篇
为了开发出商业级的应用程序,大规模的測试是不可避免的,同一时候为了提高应用程序的执行速度,须要进行必要的优化.在Android中.提供了丰富的调试与优化工具供开发者应用,主要包含模拟器和目标端等两种场 ...
- HDU1163 Eddy's digital Roots【九剩余定理】
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...