通过本篇MapReduce分析模型。深化MapReduce理解模型;和演示MapReduc进入编程模型是常用格类型和输出格公式,在这些经常使用格外公式,我们能够扩大他们的投入格公式,实例:们须要把Mongo数据作为输入,能够通过扩展InputFormat、InputSplit的方式实现。

MapReduce模型深入了解

我们已经知道:map和reduce函数的输入和输出是键值对,以下,我们開始先对这个模型进行深入了解。

首先。分析一个默认的MapReduce作业程序。

(1)一个最简单的MapReduce程序

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MinimalMapReduce extends Configured implements Tool { @Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), getClass());
FileInputFormat.addInputPath(conf, new Path("/test/input/t"));
FileOutputFormat.setOutputPath(conf, new Path("/test/output/t"));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduce(), args);
System.exit(exitCode);
}
}

(2)功能同上,默认值显示设置

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapRunner;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.lib.HashPartitioner;
import org.apache.hadoop.mapred.lib.IdentityMapper;
import org.apache.hadoop.mapred.lib.IdentityReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MinimalMapReduceWithDefaults extends Configured implements Tool { @Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), getClass());
FileInputFormat.addInputPath(conf, new Path("/test/input/t"));
FileOutputFormat.setOutputPath(conf, new Path("/test/output/t")); conf.setInputFormat(TextInputFormat.class); conf.setNumMapTasks(1);
conf.setMapperClass(IdentityMapper.class);
conf.setMapRunnerClass(MapRunner.class); conf.setMapOutputKeyClass(LongWritable.class);
conf.setMapOutputValueClass(Text.class); conf.setPartitionerClass(HashPartitioner.class); conf.setNumReduceTasks(1);
conf.setReducerClass(IdentityReducer.class); conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class); conf.setOutputFormat(TextOutputFormat.class); JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduceWithDefaults(), args);
System.exit(exitCode);
}
}

输入分片

一个输入分片(split)就是由单个map处理的输入块。

MapReduce应用开发者不须要直接处理InputSplit,由于它是由InputFormat创建的。

InputFormat 负责产生输入分片并将它们切割成记录。

怎样控制分片的大小


避免切分

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.TextInputFormat; public class NoSplittableTextInputFormat extends TextInputFormat { @Override
protected boolean isSplitable(FileSystem fs,Path file)
{
return false;
}
}

把整个文件作为一条记录处理

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter; public class WholeFileInputFormat extends
FileInputFormat<NullWritable, BytesWritable> { @Override
protected boolean isSplitable(FileSystem fs, Path file) {
return false;
} @Override
public RecordReader<NullWritable, BytesWritable> getRecordReader(
InputSplit split, JobConf job, Reporter reporter)
throws IOException {
return new WholeFileRecordReader((FileSplit) split, job);
}
} class WholeFileRecordReader implements
RecordReader<NullWritable, BytesWritable> {
private FileSplit fileSplit;
private Configuration conf;
private boolean processed = false; public WholeFileRecordReader(FileSplit fileSplit, Configuration conf) {
this.fileSplit = fileSplit;
this.conf = conf;
} @Override
public void close() throws IOException {
} @Override
public NullWritable createKey() {
return NullWritable.get();
} @Override
public BytesWritable createValue() {
return new BytesWritable();
} @Override
public long getPos() throws IOException {
return processed ? fileSplit.getLength() : 0;
} @Override
public float getProgress() throws IOException {
return processed ? 1.0f : 0.0f;
} @Override
public boolean next(NullWritable key, BytesWritable value)
throws IOException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
IOUtils.readFully(in, contents, 0, contents.length);
value.set(contents, 0, contents.length);
} finally {
IOUtils.closeStream(in);
}
processed = true;
return true;
}
return false;
}
}

输入格式

InputFormat类的层次结构

FileInputFormat类

FileInputFormat是全部使用文件作为数据源的InputFormat实现的基类,它提供了两个功能:一个定义哪些文件包括在一个作业的输入中;一个为输入文件生成分片的实现。把分片分割成记录的作业由其子类来完毕。

TextInputFormat

TextInputFormat是默认的InputFormat。每条记录是一行输入。

键是LongWritable类型,存储该行在整个文件里的字节偏移量。值是这行的内容。不包含终止符(换行符和回车符),它是Text类型的。

KeyValueTextInputFormat

通常情况下,文件张的每一行是一个键值对。使用某个分隔符进行分隔。比方制表符。能够通过key.value.separator.in.input.line属性来指定分隔符。它的默认值是一个制表符。

NLineInputFormat

假设希望Map收到固定行数的输入。须要使用NLineInputFormat。

与 TextInputFormat一样。键是文件里 行的字节偏移量,值是行本身。mapred.line.input.format.linespermap属性控制N的值。默认是1。

二进制输入

SequenceFileInputFormat、SequenceFileAsTextInputFormat、SequenceFileAsBinaryInputFormat。

多种输入

多个输入,对于每一个输入指定一个Mapper,当然,也能够多种输入格式而仅仅有一个Mapper。

输出格式

OutputFormat类的层次结构

和输入相应,输出大约有例如以下有几种类型:

文本输出、二进制输出、多个输出、延迟输出,数据库输出。

版权声明:本文博主原创文章,博客,未经同意不得转载。

MapReduce在实际编程“I/O”的更多相关文章

  1. MapReduce的核心编程思想

    1.MapReduce的核心编程思想 2.yarn集群工作机制 3.maptask并行度与决定机制 4.maptask工作机制 5.MapReduce整体流程 6.shuffle机制 7.yarn架构

  2. Mapreduce的api编程

    KEYIN:输入的KEY是maptask所读取到的一行文本的起始偏移量,longVALUEIN:输入的VALUE的类型,输入的VALUE是maptask所读取到的一行文本内容,StringKEYOUT ...

  3. MapReduce(四) 典型编程场景(二)

    一.MapJoin-DistributedCache 应用 1.mapreduce join 介绍 在各种实际业务场景中,按照某个关键字对两份数据进行连接是非常常见的.如果两份数据 都比较小,那么可以 ...

  4. Hadoop学习笔记: MapReduce Java编程简介

    概述 本文主要基于Hadoop 1.0.0后推出的新Java API为例介绍MapReduce的Java编程模型.新旧API主要区别在于新API(org.apache.hadoop.mapreduce ...

  5. 【MapReduce】二、MapReduce编程模型

      通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算.所以,还需要重点了解MapReduce的并行编程模型和运行机制 ...

  6. MapReduce: 一种简化的大规模集群数据处理法

    (只有文字没有图,图请参考http://research.google.com/archive/mapreduce.html) MapReduce: 一种简化的大规模集群数据处理法 翻译:风里来雨里去 ...

  7. 有了Hadoop MapReduce, 为什么还要Spark?

    a. 由于MapReduce的shuffle过程需写磁盘,比较影响性能:而Spark利用RDD技术,计算在内存中进行. b. MapReduce计算框架(API)比较局限, 而Spark则是具备灵活性 ...

  8. MapReduce 计算模型

    前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角 ...

  9. 基于MapReduce的SimRank++算法研究与实现

    一.算法应用背景 计算广告学(Computational Advertising)是一门广告营销科学,以追求广告投放的收益最大化为目标,重点解决用户与广告匹配的相关性和广告的竞价模型问题,涉及到自然语 ...

随机推荐

  1. hdu1542(线段树——矩形面积并)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 分析:离散化+扫描线+线段树 #pragma comment(linker,"/STA ...

  2. Oracle单表的复杂查询

    Oracle单表的复杂查询 select avg(sal),max(sal),deptnofrom empgroupby deptno; orderby deptno; 查询工资高于500或者是岗位为 ...

  3. U5首次登录

    1.在Llinx中,大小写字母是不一样的东西. 2.date可以查看日期,date的正确格式是:date +%Y/%m/%d/%H/%M(左边这句话所想表达的意思是年的字母必须为大写,月的必须为小写. ...

  4. NET通用平台

    NET通用平台.通用权限.易扩展.多语言.多平台架构框架 先拿出我半前年前平台的设计初稿,经过半年的努力我已经完成了该设计稿的所有功能.并且理念已经远远超出该设计稿. 下面是一些博友对我贴子的评价: ...

  5. css实现背景渐变色效果

    webkit内核的浏览器,例如(chrome,safari等) background:-webkit-gradient(linear,0 0,0 100%,from(#000000),to(#ffff ...

  6. 在配置文件(.settings、.config)中存储自定义对象

    原文:在配置文件(.settings..config)中存储自定义对象 引言 我前面曾写过一篇<使用配置文件(.settings..config)存储应用程序配置>,我在其中指出“sett ...

  7. ThinkPHP 连接Oracle的配置写法,(使用Oci扩展而非PDO的写法)

    測试了非常多遍,TP官网根本就没有给出正确的写法,并且网上搜索到的全都是错误的. 跟踪代码.终于找出了正确的配置写法,备份例如以下.(by default7#zbphp.com) 'DB_TYPE' ...

  8. 集合中Set_List必须覆盖 hashCode()与 equals()

    集合中Set_List必须覆盖 hashCode()与 equals() @Override public int hashCode() { System.out.println("==== ...

  9. 高性能 TCP &amp; UDP 通信框架 HP-Socket v3.2.2 正式公布

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包括服务端组件.client组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#. ...

  10. 数学思想方法-分布式计算-linux/unix技术基础(5)

    shell命令行参数 -bash-4.2$ cat test1.sh#!/bin/shecho "$0  "echo "$1  "echo "$2   ...