UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图。
首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构。
对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数。
/*
Tarjan算法求有向图的强连通分量set记录了强连通分量
Col记录了强连通分量的个数。
*/
#include <iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
#define MAXN 2005
#define MAXM 100005
struct node
{
int to,next;
}edge[MAXM],edge2[MAXM];
bool have[1005][1005];
int sums[1005];
int head[MAXN],head2[MAXN],en,en2;
bool root[MAXN];
int low[MAXN],dfn[MAXN],stack[MAXN],top,set[MAXN],col,num;
bool vis[MAXN],instack[MAXN];
int dp[MAXN];
int n;
int m;
void addedge(int a,int b)
{
edge[en].to=b;
edge[en].next=head[a];
head[a]=en++;
}
void addedge2(int a,int b)
{
edge2[en2].to=b;
edge2[en2].next=head2[a];
head2[a]=en2++;
}
void tarjan(int u)
{ vis[u]=1;
dfn[u]=low[u]=++num;
instack[u]=true;
stack[++top]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!vis[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else
if(instack[v])
low[u]=min(dfn[v],low[u]);
}
if(dfn[u]==low[u])
{
int j;
col++;
do
{
j=stack[top--];
instack[j]=false;
set[j]=col;
}
while (j!=u);
}
}
void init()
{
int i;
en=en2=top=col=num=0;
memset(head,-1,sizeof(head));
memset(head2,-1,sizeof(head2));
memset(instack,0,sizeof(instack));
memset(vis,0,sizeof(vis));
memset(set,-1,sizeof(set));
memset(have,0,sizeof(have));
memset(sums,0,sizeof(sums));
memset(root,true,sizeof(root));
memset(dp,-1,sizeof(dp));
}
int ans;
int dfs(int now,int fa)
{
if(~dp[now]) return dp[now];
int maxs=sums[now];
for(int i=head2[now];~i;i=edge2[i].next)
{
int to=edge2[i].to;
if(to!=fa)
{
maxs=max(maxs,sums[now]+dfs(to,now));
}
}
return dp[now]=maxs;
}
int main()
{
int a,b;
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
addedge(a,b);
}
for(int i=1;i<=n;i++)
if(!vis[i])tarjan(i);
for(int i=1;i<=n;i++)
{
sums[set[i]]++;
for(int j=head[i];~j;j=edge[j].next)
{
int to=edge[j].to;
if(set[i]!=set[to]&&!have[set[i]][set[to]])
{
addedge2(set[i],set[to]);
root[set[to]]=false;
have[set[i]][set[to]]=have[set[to]][set[i]]=true;
}
}
}
ans=0;
for(int i=1;i<=col;i++)
{
if(root[i])
{
dfs(i,-1);
ans=max(ans,dp[i]);
}
}
printf("%d\n",ans);
}
return 0;
}
UVA - 11324 The Largest Clique 强连通缩点+记忆化dp的更多相关文章
- UVA - 11324 The Largest Clique (强连通缩点+dp)
题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)
题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...
- UVA 11324.The Largest Clique tarjan缩点+拓扑dp
题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...
- UVa 11324 The Largest Clique (强连通分量+DP)
题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...
- UVA 11324 The Largest Clique(缩点+DAG上的dp)
求最大团.和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可. 同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零) ...
- UVA 11324 - The Largest Clique(强连通分量+缩点)
UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...
- uva 11324 The Largest Clique
vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...
- uva 11324 The Largest Clique(图论-tarjan,动态规划)
Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...
随机推荐
- DLNA它 Error, can't findlibavformat ! 解
DLNA库版本号为libdlna-0.2.4 运行./configure出错: ------------------------------ Error, can't findlibavformat ...
- session与cookie的差别
session session 的工作机制是:为每一个訪客创建一个唯一的 id (UID),并基于这个 UID 来存储变量.UID 存储在 cookie 中,或者通过 URL 进行传导. ...
- Linux 软连接与硬连接
Linux 软连接与硬连接 对于一个文件来说,有唯一的索引接点与之相应,而对于一个索引接点号,却能够有多个文件名称与之相应.因此,在磁盘上的同一个文件能够通过不同的路径去訪问该文件.注意在Linux下 ...
- Spring官方网站的改版后下载
Spring官方网站改版很长一段时间后还没有找到直接下载Jar链接包,下面总结了一些方法,可在网上,亲測可用. 1.直接输入地址,改对应版本号就可以:http://repo.springsource. ...
- HDU1163 Eddy's digital Roots【九剩余定理】
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Sencha Architect 2 的使用
俗话说的好, 工欲善其事必先利其器, 用Sencha开发的语言, 自己可能不太熟悉, 写出来很麻烦, 于是给大家介绍一个工具. 启动程序第一个界面: 单击第一个Go按钮, 创建一个项目.进入以后, 单 ...
- filestream.read(buffer,offset,count)的正确解释
filestream.read(buffer,offset,count) offset是buffer的偏移量 所以,filestream.read(buffer,1,count)会报下面的错 Syst ...
- Java 将字节数组转化为16进制的多种方案
很多时候我们需要将字节数组转化为16进制字符串来保存,尤其在很多加密的场景中,例如保存密钥等.因为字节数组,除了写入文件或者以二进制的形式写入数据库以外,无法直接转为为字符串,因为字符串结尾有\0,当 ...
- textarea文本字段的宽度和高度(width、height)自己主动适应不断变化的处理
来源:http://www.cnblogs.com/jice/archive/2011/08/07/2130069.html <HTML> <HEAD> <TITLE&g ...
- Nginx得知——Hello World模
Hello World HTTP模 1.构造config ngx_addon_name=ngx_http_mytest_module HTTP_MODULES="$HTTP_MODUL ...