给你一个n个点,每个点度为k(k为偶数)的无向图,问是否能将图中的n条边染色,使得每个点都拥有两条被染色的边。也就是说,是否存在拥有原图中n条边的子图,使得每个点的度为2?仔细想想,每个点的度为2,实际上就是求原图的最小环覆盖了。

求最小环覆盖的方法就是先求出原图的有向欧拉回路(k为偶数,欧拉回路必然存在),然后问题就转化成了是否能选择欧拉回路中的n条边,使得所有点都被覆盖?这不就转化成了DAG的最小路径覆盖了么!

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<fstream>
#include<sstream>
#include<bitset>
#include<vector>
#include<string>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define debug puts("**debug**")
#define LL long long
#define PB push_back
using namespace std; const int maxn = 1001;
int g[maxn][maxn], degree[maxn], match[maxn], id[maxn][maxn];
bool vis[maxn];
int n, k, u, v; void Euler()
{
FF(i, 1, n+1) if(degree[i])
{
int u = i;
while(true)
{
FF(j, 1, n+1) if(g[u][j] && g[j][u])
{
g[j][u] = 0;
degree[u]--, degree[i]--;
u = j;
break;
}
if(u == i) break;
}
}
} bool dfs(int u)
{
FF(i, 1, n+1) if(!vis[i] && g[u][i])
{
vis[i] = true;
if(match[i] == 0 || dfs(match[i]))
{
match[i] = u;
return true;
}
}
return false;
} bool max_match()
{
CLR(match, 0);
FF(i, 1, n+1)
{
CLR(vis, 0);
if(!dfs(i)) return false;
}
return true;
} int main()
{
while(~scanf("%d%d", &n, &k))
{
CLR(degree, 0);CLR(g, 0);
REP(i, n*k/2)
{
scanf("%d%d", &u, &v);
g[u][v] = g[v][u] = 1;
id[u][v] = id[v][u] = i+1;
degree[u]++, degree[v]++;
}
Euler();
if(max_match())
{
puts("YES");
FF(i, 1, n+1) printf("%d\n", id[match[i]][i]);
}
else puts("NO");
}
return 0;
}

sgu 286. Ancient decoration(最小环覆盖)的更多相关文章

  1. SGU 280.Trade centers(贪心)

    SGU 280.Trade centers 解题报告 题意: n(<=30000)个城市,(n-1)条道路,求最少需要选择多少个城市建造市场,使得所有城市到任意一个市场的距离不大于k. Solu ...

  2. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  3. Floyd求最小环!(转载,非原创) 附加习题(原创。)HDU-1599

    //Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵 int mincircle = infinity; Dist = Graph; ;k<nVe ...

  4. [Java面经]干货整理, Java面试题(覆盖Java基础,Java高级,JavaEE,数据库,设计模式等)

    如若转载请注明出处: http://www.cnblogs.com/wang-meng/p/5898837.html   谢谢.上一篇发了一个找工作的面经, 找工作不宜, 希望这一篇的内容能够帮助到大 ...

  5. Oracle数据库验证IMP导入元数据是否会覆盖历史表数据

    场景:imp导入数据时,最终触发器报错退出,并未导入存储过程.触发器.函数. 现在exp单独导出元数据,然后imp导入元数据,验证是否会影响已导入的表数据. 测试环境:CentOS 6.7 + Ora ...

  6. java继承覆盖与向上转型,权限

    子类可以覆盖父类的非final成员变量和重写非final方法 private私有变量和方法只能在类的内部使用,因此子类继承的同时会被隐藏,相当于不继承 protected变量,子类可以继承调用 方法被 ...

  7. 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题

    精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...

  8. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  9. bootstrop 日期控件 datepicker被弹出框dialog覆盖的解决办法

    筒子们在使用bootstrap的日期控件(datepicker , 现在官网提供的名称叫 datetimepicker)时可能会遇到如上图的问题这是啥原因造成的呢? 答案很简单时输出的优先级造成的(z ...

随机推荐

  1. 屏幕对象的F1/F4输入帮助功能

    1.HELP-REQUST[FOR{LOW|HIGH}]字段的F1帮助 当选择SAP屏幕功能的制定字段按F1键时可以调关注用自定义的程序或者系统帮助文件,该功能通常称为F1帮助. TYPES:syst ...

  2. 【Node.js 自己封装的库 http_parse, libuv】

    [Node.js 自己封装的库 http_parse, libuv] Node.js 介绍:一个网络框架,更多:http://www.oschina.net/p/nodejs 官网:http://no ...

  3. jsonp与cors跨域的一些理解(转)

    CORS其实出现时间不短了,它在维基百科上的定义是:跨域资源共享(CORS )是一种网络浏览器的技术规范,它为Web服务器定义了一种方式,允许网页从不同的域访问其资源.而这种访问是被同源策略所禁止的. ...

  4. 《Head First 设计模式》学习笔记——模板方法模式

    模板方法模式是类的行为模式.准备一个抽象类,将部分逻辑以详细方法以及详细构造函数的形式实现.然后声明一些抽象方法来迫使子类实现剩余的逻辑.不同的子类能够以不同的方式实现这些抽象方法,从而对剩余的逻辑有 ...

  5. 表空间的状态(二) - read/write

    表空间状态-READ ONLY.READ WRITE 1. 仅仅读表空间的主要用途就是为了消除对数据库大部分静态数据的备份和恢复的须要.Oracle不会更新仅仅读表空间爱你的文件.因此这部分文件能够存 ...

  6. Oracle中四种循环(GOTO、For、While、Loop)

    DECLARE x number; BEGIN x:=9; <<repeat_loop>> --循环点 x:=x-1; DBMS_OUTPUT.PUT_LINE(X); IF ...

  7. CF 316C2(Tidying Up-二分图最大边权)

    C2. Tidying Up time limit per test 4 seconds memory limit per test 256 megabytes input standard inpu ...

  8. UVA 10245 The Closest Pair Problem 最近点问题 分治算法

    题意,给出n个点的坐标,找出两点间最近的距离,如果小于10000就输出INFINITY. 纯暴力是会超时的,所以得另辟蹊径,用分治算法. 递归思路将点按坐标排序后,分成两块处理,最近的距离不是在两块中 ...

  9. FreeSwitch安装和配置记录

    安装FreeSwitch 主要示例,下面的命令: git clone -b v1.2.stable git://git.freeswitch.org/freeswitch.git cd freeswi ...

  10. 黑马程序员:Java基础总结----泛型(高级)

    黑马程序员:Java基础总结 泛型(高级)   ASP.Net+Android+IO开发 . .Net培训 .期待与您交流! 泛型(高级) 泛型是提供给javac编译器使用的,可以限定集合中的输入类型 ...