题意   建设一条河岸的污水处理系统  河岸有n个城市   每一个城市都能够自己处理污水 V   也能够把污水传到相邻的城市处理 >或<   除了你传给我我也传给你这样的情况   其他都是合法的   两端的城市不能传到不存在的城市

令d[i]表示有i个城市时的处理方法数  最后一个城市的处理方法有

1.V 自己处理自己的  与前i-1个城市的处理方法无关  有d[i-1]种方法

2.< 给左边的城市去处理  也与前i-1个城市的处理方法无关  把自己的污水给第i-1个城市即可了  有d[i-1]种方法

3.>V 左边有污水传过来  和自己的一起处理  这时第i-1个城市能够向右传了  假设这样的情况发生的话  那么第i-1个城市肯定不可能是向左传的  但前i-2个城市的处理方法没有影响  所以第i-1个城市向左传的方法有d[i-2]种   然后第i-1个城市不向左传就有d[i-1]-d[i-2]种方法了

所以有递推公式d[i]=3*d[i-1]-d[i-2];

增长速度非常快要用大数处理   大数就用java了

import java.util.*;
import java.math.*; public class Main {
public static void main(String args[]) {
Scanner in = new Scanner(System.in);
BigInteger d[] = new BigInteger[105];
d[1] = BigInteger.ONE;
d[2] = BigInteger.valueOf(3);
for (int i = 3; i <= 100; ++i)
d[i] = d[i - 1].multiply(d[2]).subtract(d[i - 2]);
while (in.hasNext())
System.out.println(d[in.nextInt()]);
in.close();
}
<span style="font-family:Microsoft YaHei;">}</span>

还有没加大数模版的c++代码

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 105;
int main()
{
int d[N] = {0, 1, 3}, n;
for (int i = 3; i <= 100; ++i)
d[i] = 3 * d[i - 1] - d[i - 2];
while (~scanf ("%d", &n))
printf ("%d\n", d[n]);
return 0;
}

Water Treatment Plants

Description

River polution control is a major challenge that authorities face in order to ensure future clean water supply. Sewage treatment plants are used to clean-up the dirty water
comming from cities before being discharged into the river. 



As part of a coordinated plan, a pipeline is setup in order to connect cities to the sewage treatment plants distributed along the river. It is more efficient to have treatment plants running at maximum capacity and less-used ones switched off for a period.
So, each city has its own treatment plant by the river and also a pipe to its neighbouring city upstream and a pipe to the next city downstream along the riverside. At each city's treatment plant there are three choices:

  • either process any water it may receive from one neighbouring city, together with its own dirty water, discharging the cleaned-up water into the river;
  • or send its own dirty water, plus any from its downstream neighbour, along to the upstream neighbouring city's treatment plant (provided that city is not already using the pipe to send it's dirty water
    downstream);
  • or send its own dirty water, plus any from the upstream neighbour, to the downstream neighbouring city's plant, if the pipe is not being used.




The choices above ensure that: 



every city must have its water treated somewhere and 

at least one city must discharge the cleaned water into the river. 

Let's represent a city discharging water into the river as "V" (a downwards flow), passing water onto its neighbours as ">" (to the next city on its right) or else "<" (to the left). When we have several cities along the river bank, we assign a symbol to each
(V, < or >) and list the cities symbols in order. For example, two cities, A and B, can 



each treat their own sewage and each discharges clean water into the river. So A's action is denoted V as is B's and we write "VV" ; 

or else city A can send its sewage along the pipe (to the right) to B for treatment and discharge, denoted ">V"; 

or else city B can send its sewage to (the left to) A, which treats it with its own dirty water and discharges (V) the cleaned water into the river. So A discharges (V) and B passes water to the left (<), and we denote this situation as "V<". 

We could not have "><" since this means A sends its water to B and B sends its own to A, so both are using the same pipe and this is not allowed. Similarly "<<" is not possible since A's "<" means it sends its water to a non-existent city on its left. 



So we have just 3 possible set-ups that fit the conditions:

         A    B       A > B       A < B 

         V    V           V       V             

  RIVER~ ~ ~ ~ ~     ~ ~ ~ ~ ~   ~ ~ ~ ~ ~RIVER

          "VV"        ">V"         "V<"

If we now consider three cities, we can determine 8 possible set-ups. 

Your task is to produce a program that given the number of cities NC (or treatment plants) in the river bank, determines the number of possible set-ups, NS, that can be made according to the rules define above. 



You need to be careful with your design as the number of cities can be as large as 100. 

Input

The input consists of a sequence of values, one per line, where each value represents the number of cities.

Output

Your output should be a sequence of values, one per line, where each value represents the number of possible set-ups for the corresponding number of cities read in the same
input line.

Sample Input

2
3
20

Sample Output

3
8
102334155

POJ 1205 Water Treatment Plants(递推)的更多相关文章

  1. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  2. POJ 1737 Connected Graph (大数+递推)

    题目链接: http://poj.org/problem?id=1737 题意: 求 \(n\) 个点的无向简单(无重边无自环)连通图的个数.\((n<=50)\) 题解: 这题你甚至能OEIS ...

  3. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

  4. 【POJ】2229 Sumsets(递推)

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 20315   Accepted: 7930 Descrip ...

  5. POJ 3734 Blocks (线性递推)

    定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...

  6. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  7. poj 1205 :Water Treatment Plants (DP+高精度)

    题意:有n个城市,它们由一个污水处理系统连接着,每个城市可以选择 1.将左边城市过来的污水和右边城市过来的污水连同本身的污水排到河里  >V< 2.将左边来的污水连同自己的污水排到右边   ...

  8. POJ 3597 种类数 数学+递推

    http://poj.org/problem?id=3597 题目大意:把一个正多边形分成数个三角形或者四边形,问有多少种方案. 思路:http://www.cnblogs.com/Ritchie/p ...

  9. poj 1664 放苹果(递推)

    题目链接:http://poj.org/problem? id=1664 放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

随机推荐

  1. 【Demo 0009】Java基础-异常

    本章学习要点:       1.  了解异常的基本概念:       2.  掌握异常捕获方法以及注意事项;       3.  掌握异常抛出方法:       4.  掌握自定义异常类和异常类继承注 ...

  2. Swift - 本地数据的保存与加载(使用NSCoder将对象保存到.plist文件)

    下面通过一个例子将联系人数据保存到沙盒的“documents”目录中.(联系人是一个数组集合,内部为自定义对象). 功能如下: 1,点击“保存”将联系人存入userList.plist文件中 2,点击 ...

  3. windows下eclipse跑junit报错:CreateProcess error=206

    from:http://isuifengfei.iteye.com/blog/1684262 windows下,eclipse中运行junit出现错误提示: Exception occurred ex ...

  4. iOS 开发学习35 本地化

    增新语言 打开Project-Info-Localizations 点击Localization下的+ 新增语言 定义多语言文件 新增String Files 在Supporting Files上.新 ...

  5. C语言scanf函数详解

    函数名: scanf  功 能: 运行格式化输入  用 法: int scanf(char *format[,argument,...]); scanf()函数是通用终端格式化输入函数,它从标准输入设 ...

  6. Delphi动态申请数组内存的方法(不使用SetLength,采用和C相似的方式)

    procedure TForm1.Button1Click(Sender: TObject);type  TArr = array [0..0] of Integer;  PArr = ^TArr;v ...

  7. Oracle中四种循环(GOTO、For、While、Loop)

    DECLARE x number; BEGIN x:=9; <<repeat_loop>> --循环点 x:=x-1; DBMS_OUTPUT.PUT_LINE(X); IF ...

  8. IOS开发之----四舍五入问题

    方法一: -(NSString *)notRounding:(float)price afterPoint:(int)position{ NSDecimalNumberHandler* roundin ...

  9. No architectures to compile for (ONLY_ACTIVE_ARCH=YES, active arch=arm64, VALID_ARCHS=armv7 armv7s)

    问题: No architectures to compile for (ONLY_ACTIVE_ARCH=YES, active arch=arm64, VALID_ARCHS=armv7 armv ...

  10. 开源工具DbUtils的使用(数据库的增删改查)

    开源工具DbUtils的使用(数据库的增删改查) 一.DbUtils简介: DBUtils是apache下的一个小巧的JDBC轻量级封装的工具包,其最核心的特性是结果集的封装,可以直接将查询出来的结果 ...