并行博弈 bzoj-4131

题目大意题目链接

注释:略。


想法:我们发现无论如何操作都会使得$(1,1)$发生改变。

所以单个$ACG$的胜利条件就是$(1,1)$是否为黑色。

如果为黑色那么可以让它变成白的。接下来无论对手如何操作都可以通过翻转$(1,1)$使得进入对手回合。

那么多个$ACG$相加就是取异或和即可。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int main()
{
int cases=rd(); while(cases--)
{
int ans=0;
int T=rd(); while(T--)
{
int n=rd(),m=rd(); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
{
int x=rd(); if(i==1&&j==1) ans^=x;
}
}
if(ans) puts("lyp win");
else puts("ld win");
}
return 0;
}

小结:博弈论问题还是要善于观察问题啊!

[bzoj4131]并行博弈_博弈论的更多相关文章

  1. BZOJ_3729_Gty的游戏_博弈论+splay+dfs序

    BZOJ_3729_Gty的游戏_博弈论+splay+dfs序 Description 某一天gty在与他的妹子玩游戏. 妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子 ...

  2. bzoj 4131: 并行博弈 (parallel)

    bzoj 4131: 并行博弈 (parallel) Description lyp和ld在一个n*m的棋盘上玩翻转棋,游戏棋盘坐标假设为(x, y),1 ≤ x ≤ n,1 ≤ y ≤ m,这个游戏 ...

  3. BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP

    BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP Description 农夫约翰的奶牛喜欢玩硬币游戏,因此他发明了一种称为“Xoinc”的两人硬币游戏. 初始时,一个有N(5 ...

  4. [bzoj2463][中山市选2009]谁能赢呢?_博弈论

    博弈论 bzoj-2463 中山市选-2009 题目大意:题目链接. 注释:略. 想法: 如果$n$是偶数的话就可以被多米诺骨牌恰好覆盖,这样的话只需要先手先走向(1,1)对应的第二段,后者必定会将棋 ...

  5. [bzoj1188][HNOI2007]分裂游戏_博弈论

    分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...

  6. BZOJ 4131 并行博弈

    发现必胜态只和(1,1)的状态有关. 无法得知必胜的方法,只知道谁会必胜. #include<iostream> #include<cstdio> #include<cs ...

  7. bzoj 4550: 小奇的博弈【博弈论+dp】

    首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了) 然后就不会了 参考 http://www.cnblogs.com/CQzhangyu/p/770 ...

  8. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  9. [poj1678]I Love this Game!_博弈论

    I Love this Game! 题目大意:题目链接 注释:略. 想法: 开始的时候以为没法dp,结果...:a>0啊! 所以可以直接dp了啊! 状态:dp[i]表示先手选了a[i]的状态. ...

随机推荐

  1. jquery js 分页

    <html xmlns="http://www.w3.org/1999/xhtml"><head>    <title>jQuery.pager ...

  2. 前端--1、HTML基础

    web服务 处于应用层的http协议负责的数据传输与解析.位于socket上层,用socket传输http数据时需要在消息开头处声明是http协议/相应http版本 状态码 状态码含义 \r\n\r\ ...

  3. Java线程-线程的基本状态

    问题:线程有哪些基本状态?这些状态是如何定义的? 新建(new):新创建了一个线程对象. 可运行(runnable):线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法.该状 ...

  4. 使用Jenkins进行android项目的自动构建(1)

    环境搭建 1. 下载JDK,安装,并将JDK的安装目录加入到环境变量JAVA_HOME,将JDK的bin目录加入到环境变量PATH. 2. 下载Android SDK,解压,并将SDK的安装目录加入到 ...

  5. 使用Intellij IDEA的Bookmarks

    用idea的时候,无意中发现了了一个小功能,叫做BookMark Ctrl+F11按出来的然后去查阅了一下文档,主要功能也就是可以清晰的看到自己标的书签附近的代码,比如我们在第11行按一下F11插入一 ...

  6. 微信小程序中使用echarts

    一.效果图 二.代码 import * as echarts from '../../component/ec-canvas/echarts'; const app = getApp(); var x ...

  7. PHP 下基于 php-amqp 扩展的 RabbitMQ 简单用例 (一) -- 安装 AMQP 扩展和 Direct Exchange 模式

    Windows 安装 amqp 扩展 RabbitMQ 是基于 amqp(高级消息队列协议) 协议的.使用 RabbitMQ 前必须为 PHP 安装相应的 amqp 扩展. 下载相应版本的 amqp ...

  8. 第3节 hive高级用法:15、hive的数据存储格式介绍

    hive当中的数据存储格式: 行式存储:textFile sequenceFile 都是行式存储 列式存储:orc parquet 可以使我们的数据压缩的更小,压缩的更快 数据查询的时候尽量不要用se ...

  9. vlmcsd-1111-2017-06-17

    Source and binaries: http://rgho.st/6c6R7RwMZ   全部编译好了 https://www.upload.ee/files/7131474/vlmcsd-11 ...

  10. while(n--)

    while(n--)的意思:先判断n是否等于0,如果等于0,就不循环.如果不等于0,就进入循环,同时n的值减1.一直等到n=0才退出while循环. C语言.C++