二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=50005;
int t,k,mb[N],q[N],tot;
bool v[N];
int read()
{
int r=0;
char p=getchar();
while(p>'9'||p<'0')
p=getchar();
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r;
}
bool ok(long long x)
{
long long sum=0ll;
for(int i=1;i*i<=x;i++)
sum+=x/(i*i)*mb[i];
return sum>=k;
}
int main()
{
mb[1]=1;
for(int i=2;i<=50000;i++)
{
if(!v[i])
{
q[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*q[j]<=50000;j++)
{
int k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
t=read();
while(t--)
{
k=read();
long long l=k,r=2e9,ans;
while(l<=r)
{
long long mid=(l+r)>>1;
if(ok(mid))
r=mid-1,ans=mid;
else
l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}

bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】的更多相关文章

  1. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  3. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  4. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

  5. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  8. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  9. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

随机推荐

  1. 终端中的乐趣:6个有趣的Linux命令行工具

    文章链接: http://hpw123.net/a/Linux/ruanjiananzhuang/2014/1103/117.html​ 很多其它文章尽在 http://www.hpw123.net ...

  2. 教你如何在MySql中导入大小超过2M的数据库文件

    我的个人实践是:phpmyadmin 导出 utf-8 的 insert 模式的 abc.sql ftp abc.sql 到服务器 ssh 到服务器 mysql -u abc -p use KKK(数 ...

  3. 【转载】高性能IO模型浅析

    服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(Non-blocking IO):默认创建的s ...

  4. Java单例的实现

    1.声明实例变量(静态) 2.私有化构造函数 3.创建获取实例的方法 public class Singleton{ //创建实例变量 private static Singleton singlet ...

  5. @SafeVarargs 使用说明

    说明: @SafeVarargs 是jdk1.7引入的适用于可变参数与泛型能够更好结合的一个注解. 官方解释: 程序员认定带有注释的主体或者构造函数不会对其执行潜在的不安全操作 将此注释应用于未经检查 ...

  6. Linux环境下如何查找哪个线程使用CPU最长

    top -H -p pid 查看端口是否被占用: netstat -apn|grep 80

  7. 翻译:A Tutorial on the Device Tree (Zynq) -- Part II

    A Tutorial on the Device Tree (Zynq) -- Part II 设备树结构 Zynq的设备树如下: /dts-v1/; / { #address-cells = < ...

  8. mysql 查询正在执行的事务以及等待锁 常用的sql语句

    使用navicat测试学习: 首先使用set autocommit = 0;(取消自动提交,则当执行语句commit或者rollback执行提交事务或者回滚)   在打开一个执行update查询 正在 ...

  9. 多媒体开发之---h264快速运动估计算法

    #include "stdio.h"#include "stdlib.h"#include "malloc.h"#include " ...

  10. vue、react、angular三大框架对比

    前端的三大框架当属vue.react以及angular了,个人比较偏向react,它的社区比较繁荣,有很多丰富的组件 .angular的话感觉编译时间有点长,等待很恼火. vue与react vue和 ...