【HDU 6006】Engineer Assignment(状压DP)
Problem Description
In Google, there are many experts of different areas. For example, MapReduce experts, Bigtable experts, SQL experts, etc. Directors need to properly assign experts to various projects in order to make the projects going smoothly.
There are N projects owned by a director. For the ith project, it needs Ci different areas of experts, ai,0,ai,1,⋅⋅⋅,ai,Ci−1 respective. There are M engineers reporting to the director. For the ith engineer, he is an expert of Di different areas, bi,0,bi,1,...,bi,Di−1.
Each engineer can only be assigned to one project and the director can assign several engineers to a project. A project can only be finished successfully if the engineers expert areas covers the project areas, which means, for each necessary area of the project, there is at least one engineer
masters it.
The director wants to know how many projects can be successfully finished.
Input
The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with a line consisting of 2 integers, N the number of projects and M the number of engineers. Then N lines follow. The ith line containing the information of the ith project starts
with an integer Ci then Ci integers follow, ai,0,ai,1,...,ai,Ci−1 representing the expert areas needed for the ith project. Then another M lines follow. The ith line containing the information of the ith engineer starts with an integer Di then Di integers follow, bi,0,bi,1,...,bi,Di−1 representing the expert areas mastered by ith engineer.
Output
For each test case, output one line containing “Case #x: y”, where x is the test case number (starting from 1) and y is the maximum number of projects can be successfully finished.
limits
∙1≤T≤100.
∙1≤N,M≤10.
∙1≤Ci≤3.
∙1≤Di≤2.
∙1≤ai,j,bi,j≤100.
Sample Input
1
3 4
3 40 77 64
3 10 40 20
3 40 20 77
2 40 77
2 77 64
2 40 10
2 20 77
Sample Output
Case #1: 2
Hint
For the first test case, there are 3 projects and 4 engineers. One of the optimal solution is to assign the first(40 77) and second engineer(77 64) to project 1, which could cover the necessary areas 40, 77, 64. Assign the third(40 10) and forth(20 77) engineer to project 2, which could cover the necessary areas 10, 40, 20. There are other solutions, but none of them can finish all 3 projects.
So the answer is 2.
Source
2016 CCPC-Final
题解
对于每个项目,枚举出它对所有的工程师的选择,在枚举所有状态时,DP方程为
\]
这是一个背包问题,每个项目有选或者不选的两种情况
参考代码
#include <map>
#include <queue>
#include <cmath>
#include <cstdio>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,n,x) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=15;
int a[N][N],b[N][N],c[N][1<<(10)+5];
ll dp[N][(1<<10)+5];
int main(){
int T=read();
REP(i,1,T){
int n=read(),m=read();
REP(i,1,n){
a[i][0]=read();
REP(j,1,a[i][0]) a[i][j]=read();
}
REP(i,1,m){
b[i][0]=read();
REP(j,1,b[i][0]) b[i][j]=read();
}
int vis[105],cnt;
mem(c,0);
REP(i,1,n){
REP(j,0,(1<<m)-1){ //枚举每个项目对所有工程师的选择情况
REP(ii,0,100) vis[ii]=0; //所有领域
cnt=0;
REP(k,1,m){
if(j&(1<<(k-1))){
cnt++;
REP(jj,1,b[k][0]) vis[b[k][jj]]=1;
}
}
if(cnt>3) continue;
int flag=0;
REP(k,1,a[i][0]) if(vis[a[i][k]]==0){
flag=1;break;
}
if(!flag) c[i][++c[i][0]]=j; //这种选择情况对i项目合法
}
}
mem(dp,0);
REP(i,1,n){
REP(j,0,(1<<m)-1){
REP(k,1,c[i][0]){
if((j|c[i][k])==j){
dp[i][j]=max(dp[i][j],dp[i-1][j-c[i][k]]+1);
}
}
dp[i][j]=max(dp[i][j],dp[i-1][j]);
}
}
printf("Case #%d: %lld\n",i,dp[n][(1<<m)-1]);
}
return 0;
}
【HDU 6006】Engineer Assignment(状压DP)的更多相关文章
- hdu 6006 Engineer Assignment 状压dp
Engineer Assignment Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU - 6006 Engineer Assignment (状压dfs)
题意:n个工作,m个人完成,每个工作有ci个阶段,一个人只能选择一种工作完成,可以不选,且只能完成该工作中与自身标号相同的工作阶段,问最多能完成几种工作. 分析: 1.如果一个工作中的某个工作阶段没有 ...
- HDU6006:Engineer Assignment(状压DP)
传送门 题意 给出n个工程,m个工程师,每个工程和工程师需要/拥有若干个技能,询问能够完成的最大工程个数,每个工程师用一次 分析 dp[i][j]表示前i个工程用的工程师集合为j的最大工程个数,那么有 ...
- hdu 3247 AC自动+状压dp+bfs处理
Resource Archiver Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Ot ...
- hdu 2825 aC自动机+状压dp
Wireless Password Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 5765 Bonds(状压DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5765 [题目大意] 给出一张图,求每条边在所有边割集中出现的次数. [题解] 利用状压DP,计算不 ...
- hdu 3681(bfs+二分+状压dp判断)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 思路:机器人从出发点出发要求走过所有的Y,因为点很少,所以就能想到经典的TSP问题.首先bfs预 ...
- hdu 4778 Gems Fight! 状压dp
转自wdd :http://blog.csdn.net/u010535824/article/details/38540835 题目链接:hdu 4778 状压DP 用DP[i]表示从i状态选到结束得 ...
- hdu 4856 Tunnels (bfs + 状压dp)
题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...
- HDU 4272 LianLianKan (状压DP+DFS)题解
思路: 用状压DP+DFS遍历查找是否可行.假设一个数为x,那么他最远可以消去的点为x+9,因为x+1~x+4都能被他前面的点消去,所以我们将2进制的范围设为2^10,用0表示已经消去,1表示没有消去 ...
随机推荐
- 简单几何(求交点) UVA 11178 Morley's Theorem
题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...
- 前端编辑神器---sublime text2
个人印象 之前一直在用dreamweaver,但是由于软件太大,加载速度慢,所以sublime text2作为一款跨平台的编辑器,它的优势就展现出来了,它本身小巧,支持代码高亮,语法提示,自动完成,自 ...
- 组件的 state 和 setState
state 我们前面提到过,一个组件的显示形态是可以由它数据状态和配置参数决定的.一个组件可以拥有自己的状态,就像一个点赞按钮,可以有“已点赞”和“未点赞”状态,并且可以在这两种状态之间进行切换.Re ...
- hihocoder1078 线段树的区间修改
思路: 线段树区间更新.注意这里是把一个区间的所有数全部赋值为一个新的值. 实现: #include <bits/stdc++.h> using namespace std; ; ], l ...
- 日常博客----rem,em的恩怨相杀
基本知识: 使用 em 和 rem 单位可以让我们的设计更加灵活,能够控制元素整体放大缩小,而不是固定大小. 我们可以使用这种灵活性,使我们在开发期间,能更加快速灵活的调整,允许浏览器用户调整浏览器大 ...
- postgresql版sde(10.4.1)安装说明
从ArcGIS 10.3开始,彻底没有了sde的安装包,安装sde数据库需要先安装arcgis desktop,通过arccatalog建数据库,同时也不能建sde服务,只能使用直连 以下演示在sde ...
- iOS 使用UIBezierPath和CAShapeLayer画各种图形
CAShapeLayer 是 CALayer 的子类,但是比 CALayer 更灵活,可以画出各种图形,当然,你也可以使用其他方式来画,随你. 杂谈 在 CAShapeLayer 中,也可以像 CAL ...
- 找不到draw9patch.bat?已经不用找了
Google 已经因为 draw9patch 热门的原因,把它集成在 Android Studio 里面了, 你现在可以直接在 Android Studio 里直接打开编辑了.
- mac下iterm2配置安装,通过expact实现保存账号,及通过跳板登陆配置
在参考了几款mac不错的ssh工具外,最终选择使用iterm2.本来打算用FinalShell,安装后发现其icon在访达中根本不现实,而且每次访问还需要输入管理员账号密码,强迫症根本受不了... 官 ...
- QTableWidget表头样式
转载请注明出处:http://www.cnblogs.com/dachen408/p/7742680.html QTableView { background-color: rgba(255, 255 ...