题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712

The modular modular multiplicative inverse of an integer a modulo
m
is an integer x such that a-1x (mod
m)
. This is equivalent to ax≡1 (mod
m)
.

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8

References

代码例如以下:

#include <cstdio>
#include <cstring>
#include <cmath>
typedef long long LL; LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
else
{
LL r = exgcd(b,a%b,x,y);
LL t = x;
x = y;
y = t-a/b*y;
return r;
}
} LL cal(LL a, LL b, LL c)
{
LL x, y;
LL tt = exgcd(a, b, x, y);
if(c%tt)//无整数解
{
return -1;
}
x*=c/tt;
b/=tt;
if(b<0)
b=-b;
LL ans=x%b;
if(ans<=0)
ans+=b;
return ans;
} int main()
{
LL a, b, t;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&a,&b);
LL ans = cal(a, b, 1);
if(ans == -1)
{
printf("Not Exist\n");
continue;
}
printf("%lld\n",ans);
}
return 0;
}

ZOJ 3609 Modular Inverse(扩展欧几里德)的更多相关文章

  1. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  2. ZOJ——3609 Modular Inverse

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  3. ZOJ 3609 Modular Inverse(扩展欧几里得)题解

    题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...

  4. ZOJ 3609 Modular Inverse

    点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...

  5. zjuoj 3609 Modular Inverse

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 Modular Inverse Time Limit: 2 Seco ...

  6. 【ZOJ】3609 Modular Inverse

    1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 /* 3609 */ #include <iostream> #include <sstrea ...

  7. Modular Inverse(模逆元,扩展欧几里德)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  8. Modular Inverse(zoj3609+欧几里德)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  9. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

随机推荐

  1. P2P实现的原理

    为了项目的后期IM应用,最近在研究libjingle,中间看了也收集了很多资料,感慨网上很多资料要么太过于纠结协议(如STUN.ICE等)实现细节,要么中间有很多纰漏.最后去伪存真,归纳总结了一下,希 ...

  2. javascript事件委托和jquery事件委托

    元旦过后,新年第一篇. 初衷:很多的面试都会涉及到事件委托,前前后后也看过好多博文,写的都很不错,写的各有千秋,自己思前想后,为了以后自己的查看,也同时为现在找工作的前端小伙伴提供一个看似更全方位的解 ...

  3. 性能测试培训day2

    上节课 性能测试,多线程.协议.场景 实施:1,脚本开发 运行  排错(看回放,然后view-test_results,看业务) 参数化.关联.检查点.事务.思考时间.集合点 参数化:不做参数化的话, ...

  4. Node.js中的Buffer

    Buffer介绍 为什么要用Buffer? 在Node/ES6 出现之前,前端工程师只需要进行一些简单的额字符串或者ODM操作就可以满足业务需求了,所有对二进制数据比较陌生. 在node出现之后,前端 ...

  5. LeetCode(59)SPiral Matrix II

    题目 Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. F ...

  6. POJ3641 (快速幂) 判断a^p = a (mod p)是否成立

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  7. ajax导出excel文件并增加等待动画效果

    html: <button class="btn btn-default" onclick="logToExcel('{:url('userLogToExcel', ...

  8. [BZOJ1029] [JSOI2007]建筑抢修(贪心 + 优先队列)

    传送门 把数据存在结构体中,至于怎么贪心? 肯定会有些想法,正确错误先不必说,先来试一试. 1.按照 t2 为第一关键字从小到大排,按照 t1 为第二关键字从小到大排 这个显然错,比如后面有个数的 t ...

  9. hdu 1179最大匹配

    #include<stdio.h> #include<string.h> #define N 200 int map[N][N],visit[N],link[N],n,m; i ...

  10. NOIP2012 文化之旅

    题目描述 Description 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不同的国家可 ...