把题意简化,就是要求

\[\prod_{d=1}^{min(n,m)}f[d]^{\sum_{i=1}^{n}\sum_{j=1}^{m}e[gcd(i,j)==d]}
\]

把幂用莫比乌斯反演转化,得到

\[\prod_{d=1}^{min(n,m)}f[d]^{\sum_{k=1}^{min(\frac{n}{d},\frac{m}{d})}\mu(k)\left \lfloor \frac{n}{dk} \right \rfloor\left \lfloor \frac{m}{dk} \right \rfloor}
\]

然后枚举q=dk

\[\prod_{q=1}^{min(n,m)}\left ( \prod_{d|q}f[d]^{\mu(\frac{q}{d})} \right )^{\left \lfloor \frac{n}{q} \right \rfloor\left \lfloor \frac{m}{q} \right \rfloor }
\]

用枚举因数的方法处理出\( f[d]^{\mu(\frac{q}{d})} \),根据调和级数,复杂度为\( O(nlog_2n) \),然后处理询问的时候分块,复杂度为\( O(\sqrt{n}+\sqrt{m}) \)

因为用了\( O(nlog_2n) \)的粗暴逆元求法,所以跑的比较慢…是可以线性求的。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long N=1000005,mod=1e9+7;
int T,n,m,mb[N],p[N],tot;
long long f[N],t[N],invf[N],s[N],invs[N],ans;
bool v[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
long long inv(long long x)
{//cout<<x<<endl;
return x==1?1:(mod-mod/x)*inv(mod%x)%mod;
}
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int main()
{
T=read();
mb[1]=1;
for(int i=2;i<=1000000;i++)
{
if(!v[i])
{
p[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*p[j]<=1000000;j++)
{
int k=i*p[j];
v[k]=1;
if(i%p[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
f[1]=1;
invf[1]=inv(1);
for(int i=2;i<=1000000;i++)
{
f[i]=(f[i-1]+f[i-2])%mod;
invf[i]=inv(f[i]);
}//cout<<"OKF"<<endl;
// for(int i=1;i<=20;i++)
// cout<<f[i]<<" "<<invf[i]<<endl;
for(int i=1;i<=1000000;i++)
t[i]=1;
for(int i=1;i<=1000000;i++)
for(int j=i;j<=1000000;j+=i)
{
if(mb[j/i]==-1)
t[j]=(long long)t[j]*(long long)invf[i]%mod;
else if(mb[j/i]==1)
t[j]=(long long)t[j]*(long long)f[i]%mod;
}//cout<<"ok"<<endl;
// for(int i=1;i<=20;i++)
// cout<<i<<" "<<t[i]<<endl;
s[0]=invs[0]=1ll;
for(int i=1;i<=1000000;i++)
{
s[i]=s[i-1]*t[i]%mod;
invs[i]=inv(s[i]);
}
while(T--)
{
n=read(),m=read();
ans=1ll;
if(n>m)
swap(n,m);
for(int i=1,la;i<=n;i=la+1)
{
int ni=n/i,mi=m/i;
la=min(n/ni,m/mi);
ans=ans*ksm(s[la]*invs[i-1]%mod,(long long)ni*mi)%mod;
}
printf("%lld\n",ans);
}
return 0;
}

bzoj 4816: [Sdoi2017]数字表格【莫比乌斯反演+逆元】的更多相关文章

  1. BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...

  2. BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演

    大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...

  3. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  4. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  5. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

  6. 【刷题】BZOJ 4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  7. BZOJ4816 SDOI2017 数字表格 莫比乌斯反演

    传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...

  8. BZOJ 4816[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 \(Description\) 用\(f_i\)表示\(fibonacci\)数列第\(i\)项,求\(\prod_{i=1}^{n}\prod_{j=1}^{m}f[gcd(i,j)]\) ...

  9. bzoj 4816 [Sdoi2017]数字表格——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\lim ...

随机推荐

  1. AtCoder Regular Contest 091&092

    091E(构造) 题意: 给出n,a,b.你需要构造出一个长度为n的n的排列,其中最长上升子序列的长度为a,最长下降子序列的长度为b. n,a,,b<=3e5 分析: 我们可以构造出这样的数列, ...

  2. File类的三种构造方法

    package cn.zmh.File; import java.io.File; /* * * File类的构造方法 三种重载形式 * * */ public class FileDemo1 { p ...

  3. 转 Linux里设置环境变量的方法(export PATH)

    1.动态库路径的设置 Linux下调用动态库和windows不一样.linux 可执行程序是靠配置文件去读取路径的,因此有些时候需要设置路径 具体操作如下export LD_LIBRARY_PATH= ...

  4. Java实现拖拽上传

    原文:http://www.open-open.com/code/view/1437358795584 在项目开发中由于实际需求,需要开发拖拽上传的功能,ok! 先看效果图: jsp上传前端代码: & ...

  5. datasnap使用ipv6

    有些人说DATASNAP不支持IPv6,只支持IPv4. 这是不正确的. DATASNAP默认是使用IPv4在ipv6 环境下 怎样用datasnap?Params.Values['Communica ...

  6. 去哪网实习总结:easyui在JavaWeb中的使用,以datagrid为例(JavaWeb)

    本来是以做数据挖掘的目的进去哪网的,结构却成了系统开发. . . 只是还是比較认真的做了三个月.老师非常认同我的工作态度和成果.. . 实习立即就要结束了,总结一下几点之前没有注意过的变成习惯和问题, ...

  7. 【Mongodb教程 第十二课 】PHP mongodb 的使用

    mongodb 不用过多的介绍了,NOSQL的一种,是一个面向文档的数据库,以其方便灵活的数据结构,对于开发者来说是比较友好的,同时查询的速度也是比较快的,现在好多网站 开始使用mongodb ,具体 ...

  8. vmware10上安装mac os 10.9

    来源地址:http://dtbuluo.com/blog/archives/350 序言: 前几天跟朋友开玩笑说,要不我们一起来学习一下swift编程语言吧~我们就抱着玩玩的态度,没有想过要做出什么优 ...

  9. Android Service 不被杀死并提高优先级

    Android Service 不被杀死有两种思路,一种是将APP设置为系统应用.还有一种是增强service的生命力.即使屏幕背光关闭时也能执行. 因为设置为系统应用须要root.所以一般使用后一种 ...

  10. 在windows cgywinportable上,通过运行linux命令,批量改动文件名。

    在windows cgywinportable上.通过运行linux命令.批量改动文件名. 实例:将当前文件夹下的全部文件名称加上.sql find ./ -type f -exec mv {}  ' ...