bzoj 1089: [SCOI2003]严格n元树【dp+高精】
设f[i]为深度为i的n元树数目,s为f的前缀和
s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种
写个高精就行了,好久没写WA了好几次……
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=55,mod=1e8;
int n,m;
struct qwe
{
long long a[N];
void clr()
{
memset(a,0,sizeof(a));
}
qwe operator + (const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
{
c.a[i]+=a[i]+b.a[i];
c.a[i+1]+=c.a[i]/mod;
c.a[i]%=mod;
}
return c;
}
qwe operator -(const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
{
c.a[i]+=a[i]-b.a[i];
if(c.a[i]<0)
{
c.a[i]+=mod;
c.a[i+1]--;
}
}
return c;
}
qwe operator * (const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
for(int j=1;j+i-1<=50;j++)
c.a[j+i-1]+=a[i]*b.a[j];
for(int i=1;i<=50;i++)
{
c.a[i+1]+=c.a[i]/mod;
c.a[i]%=mod;
}
return c;
}
}s[N],y;
qwe ksm(qwe a,int b)
{
qwe r=y;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
int main()
{
scanf("%d%d",&n,&m);
if(m==0)
{
puts("1");
return 0;
}
y.a[1]=1;
s[0]=y;
for(int i=1;i<=m;i++)
s[i]=ksm(s[i-1],n)+y;
qwe ans=s[m]-s[m-1];
int l=50;
while(!ans.a[l])
l--;
printf("%lld",ans.a[l]);
for(int i=l-1;i>=1;i--)
printf("%08lld",ans.a[i]);
return 0;
}
bzoj 1089: [SCOI2003]严格n元树【dp+高精】的更多相关文章
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
- BZOJ 1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1591 Solved: 795[Submit][Statu ...
- BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度
题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...
- bzoj 1089 SCOI2003严格n元树 递推
挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)
题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- P4295 [SCOI2003]严格N元树 DP
思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...
随机推荐
- idea-自定义Java模板文件
自定义 idea Java 模板步骤. #parse("File Header.java")表示引用的模板文件,如下:
- POJ 2965 The Pilots Brothers' refrigerator【BFS+状压 Or 脑洞】
题目链接: http://poj.org/problem?id=1753 题意: 给定冰箱门的开关情况,改变一个门则其所在行列的门都会发生改变,求出改变门的最少操作使得最终所有门都是打开状态. 代码: ...
- List和Map、Set的区别
首先 List 和 Set 是存储单列数据的集合,Map 是存储键和值这样的双列数据的集合:List 中存储的数据是有顺序,并且允许重复:Map 中存储的数据是没有顺序的,其键是不能重复的,它的值是可 ...
- MongoDB学习day09--Mongoose数据校验
一.Mongoose检验参数 required : 表示这个数据必须传入max: 用于 Number 类型数据, 最大值 min: 用于 Number 类型数据, 最小值 enum:枚举类型, 要求数 ...
- Spring Boot应用的启动和停止(Spring Boot应用通过start命令启动)
Spring Boot,作为Spring框架对“约定优先于配置(Convention Over Configuration)”理念的最佳实践的产物,它能帮助我们很快捷的创建出独立运行.产品级别的基于S ...
- dtrace
http://blog.csdn.net/lw1a2/article/details/7389323
- ubuntu16.04LTS安装软件
1.安装chrome 下载源加入到系统的源列表 sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/ ...
- 一起talk C栗子吧(第一百二十四回:C语言实例--内置宏)
各位看官们,大家好,上一回中咱们说的是显示变量和函数地址的样例,这一回咱们说的样例是:内置宏.闲话休提,言归正转.让我们一起talk C栗子吧! 看官们,我们在编译程序的时候,假设有语法错误,编译器就 ...
- Xsolla和Hi-Rez工作室联手推行SMITE
视频游戏店面管理和计费解决方式的领导者,Xsolla.将重拳出击将与Hi-Rez游戏工作室合作.该工作室是一家美国的独立游戏开发商,主要开发MOBA游戏-SMITE. 支持全球600多种支付方式 Xs ...
- 【iOS系列】-iOS的多线程解析
[iOS系列]-iOS的多线程解析 iOS的多线程实现技术: 1:GCD -- Grand Central Dispatch 是基于C语言的底层API 用Block定义任务,使用起来非常灵活便捷 提供 ...