设f[i]为深度为i的n元树数目,s为f的前缀和

s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种

写个高精就行了,好久没写WA了好几次……

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=55,mod=1e8;
int n,m;
struct qwe
{
long long a[N];
void clr()
{
memset(a,0,sizeof(a));
}
qwe operator + (const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
{
c.a[i]+=a[i]+b.a[i];
c.a[i+1]+=c.a[i]/mod;
c.a[i]%=mod;
}
return c;
}
qwe operator -(const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
{
c.a[i]+=a[i]-b.a[i];
if(c.a[i]<0)
{
c.a[i]+=mod;
c.a[i+1]--;
}
}
return c;
}
qwe operator * (const qwe &b) const
{
qwe c;
c.clr();
for(int i=1;i<=50;i++)
for(int j=1;j+i-1<=50;j++)
c.a[j+i-1]+=a[i]*b.a[j];
for(int i=1;i<=50;i++)
{
c.a[i+1]+=c.a[i]/mod;
c.a[i]%=mod;
}
return c;
}
}s[N],y;
qwe ksm(qwe a,int b)
{
qwe r=y;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
int main()
{
scanf("%d%d",&n,&m);
if(m==0)
{
puts("1");
return 0;
}
y.a[1]=1;
s[0]=y;
for(int i=1;i<=m;i++)
s[i]=ksm(s[i-1],n)+y;
qwe ans=s[m]-s[m-1];
int l=50;
while(!ans.a[l])
l--;
printf("%lld",ans.a[l]);
for(int i=l-1;i>=1;i--)
printf("%08lld",ans.a[i]);
return 0;
}

bzoj 1089: [SCOI2003]严格n元树【dp+高精】的更多相关文章

  1. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

  2. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  3. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  4. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  5. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  6. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  7. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  8. BZOJ1089:[SCOI2003]严格n元树(DP,高精度)

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  9. P4295 [SCOI2003]严格N元树 DP

    思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...

随机推荐

  1. js去除字符串两边的空格

    bless = bless.replace(/(^\s*)|(\s*$)/g, "") // 去掉两边的空格

  2. oracle alert 日志位置

    Oracle 11g Alert log 文件位置的问题 https://blog.csdn.net/yujin2010good/article/details/7690191 https://blo ...

  3. 洛谷——P3225 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  4. Java SpringMVC实现PC端网页微信扫码支付完整版

    一:前期微信支付扫盲知识 前提条件是已经有申请了微信支付功能的公众号,然后我们需要得到公众号APPID和微信商户号,这个分别在微信公众号和微信支付商家平台上面可以发现.其实在你申请成功支付功能之后,微 ...

  5. mysql手记

    myisam innoDB是mysql经常使用的存储引擎 MyISAM不支持事务.也不支持外键.但其訪问速度快.对事务完整性没有要求. InnoDB存储引擎提供了具有提交.回滚和崩溃恢复能力的事务安全 ...

  6. SQL 撤销索引、撤销表以及撤销数据库

    SQL 撤销索引.撤销表以及撤销数据库 通过使用 DROP 语句,可以轻松地删除索引.表和数据库. DROP INDEX 语句 DROP INDEX 语句用于删除表中的索引. 用于 MS Access ...

  7. Linux程序设计(搭建开发环境--curses)

    看官们.咱们今天要说的内容.是前面内容的一点小补充,详细的内容是:安装curses开发包.以搭建 开发环境.闲话休说,言归正转. 我们在前面说过搭建开发环境的内容,主要说了开发环境中的GCC和VIM, ...

  8. Qt 调用 Java 方法笔记

    Qt 调用 Java 方法笔记 假设遇到相似的错误: error: undefined reference to '_jstring* QAndroidJniObject::callStaticMet ...

  9. Tomcat和Jetty对WebSocket的支持

    公司项目须要,了解了下眼下几种支持WebSocket的框架.曾经用jWebSocket做过一些项目.相对来说.改jWebSocket的源代码略复杂,也不是一天两天能搞定的. 一调研才发现,如今非常多主 ...

  10. for循环console输出结果的问题

    我想定时打印出一串数字,写好了如下代码 for (var i = 0; i < 5; i++) {   setTimeout(function () {     console.log(i); ...