5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn;
析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无法进行运算的。好像有的思路,最后也没想出来,还是参考的大牛的博客
http://blog.csdn.net/spring371327/article/details/52973534
那是讲的很详细了,就不多说了,注意这个取模不是1e9+7,一开始忘了。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const LL mod = 2147493647;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Matrix{
LL a[7][7];
Matrix operator * (const Matrix &p){
Matrix res;
for(int i = 0; i < 7; ++i)
for(int j = 0; j < 7; ++j){
res.a[i][j] = 0;
for(int k = 0; k < 7; ++k)
res.a[i][j] = (res.a[i][j] + a[i][k] * p.a[k][j]) % mod;
}
return res;
}
}; Matrix quick_pow(Matrix b, LL n){
Matrix res;
memset(res.a, 0, sizeof res.a);
for(int i = 0; i < 7; ++i) res.a[i][i] = 1;
while(n){
if(n & 1) res = res * b;
b = b * b;
n >>= 1;
}
return res;
} int main(){
Matrix x;
memset(x.a, 0, sizeof x.a);
x.a[0][0] = 1; x.a[0][1] = 2; x.a[0][2] = 1; x.a[0][3] = 4; x.a[0][4] = 6;
x.a[0][5] = 4; x.a[0][6] = 1; x.a[1][0] = 1; x.a[2][2] = 1; x.a[2][3] = 4;
x.a[2][4] = 6; x.a[2][5] = 4; x.a[2][6] = 1; x.a[3][3] = 1; x.a[3][4] = 3;
x.a[3][5] = 3; x.a[3][6] = 1; x.a[4][4] = 1; x.a[4][5] = 2; x.a[4][6] = 1;
x.a[5][5] = 1; x.a[5][6] = 1; x.a[6][6] = 1;
int T; cin >> T;
while(T--){
LL n, a, b;
scanf("%I64d %I64d %I64d", &n, &a, &b);
if(1 == n) printf("%I64d\n", a);
else if(2 == n) printf("%I64d\n", b);
else{
Matrix res = quick_pow(x, n-2);
LL ans = 0;
ans = (ans + res.a[0][0] * b) % mod;
ans = (ans + res.a[0][1] * a) % mod;
ans = (ans + res.a[0][2] * 16) % mod;
ans = (ans + res.a[0][3] * 8) % mod;
ans = (ans + res.a[0][4] * 4) % mod;
ans = (ans + res.a[0][5] * 2) % mod;
ans = (ans + res.a[0][6]) % mod;
printf("%I64d\n", ans);
}
}
return 0;
}
5950 Recursive sequence (矩阵快速幂)的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
- HDU5950 Recursive sequence (矩阵快速幂)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
随机推荐
- [codeVS1204] 单词背诵
题目描述 灵梦有n个单词想要背,但她想通过一篇文章中的一段来记住这些单词. 文章由m个单词构成,她想在文章中找出连续的一段,其中包含最多的她想要背的单词(重复的只算一个).并且在背诵的单词量尽量多的情 ...
- poj1459多源多汇最大流问题
/*基本构图题,多源多汇,添加一个源点和一个汇点,所有源点都来自这个源点,同理,所有汇点 都汇于这个汇点,dinic第二战,本来应该1A的,犯了一个低级错误!while(scanf("%d) ...
- poj2117求割点后最多的块。
tarjan算法,枚举割点(注意此题无向图可能不连通),每个割点分割后最大块数+连通分量-1即可.开始老是TLE,后来比较了他人代码,只在vector<vector<int.>.&g ...
- 把excel导入到mysql中
方法很多,不过建议你先看看mysql的开发文档,里面写的很详细的,如果你懒得看,可以看下面的 1.有个软件PHP Excel Parser Pro v4.2可以 2.可将Excel存成csv格式.然后 ...
- hdu - 5074 Hatsune Miku (简单dp)
有m种不同的句子要组成一首n个句子的歌,每首歌都有一个美丽值,美丽值是由相邻的句子种类决定的,给出m*m的矩阵map[i][j]表示第i种句子和第j种句子的最大得分,一首歌的美丽值是由sum(map[ ...
- Sudoku---hdu2676(数独DFS)
http://poj.org/problem?id=2676 递归深搜 #include<stdio.h> #include<string.h> #include<alg ...
- Storm专题二:Storm Trident API 使用具体解释
一.概述 Storm Trident中的核心数据模型就是"Stream",也就是说,Storm Trident处理的是Stream.可是实际上Stream是被成批处理的. ...
- coco2dx新建项目报错,ld: -pie can only be used when targeting iOS 4.2 or later clang: error: linker command
在新建cocos2d-x以后,执行发现下面错误: ld: -pie can only be used when targeting iOS 4.2 or later clang: error: lin ...
- Python开发【第2节】【Python运算符】
Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.算术运算符 假设变量a = 10,变量b = 21: ...
- ZOJ 3691 Flower(最大流+二分)
Flower Time Limit: 8 Seconds Memory Limit: 65536 KB Special Judge Gao and his girlfriend's ...