主要知识点:

本节没有太懂,以后复习时补上

 

 
 

聚合分析的内部原理是什么????aggs,term,metric avg max,执行一个聚合操作的时候,内部原理是怎样的呢?用了什么样的数据结构去执行聚合?是不是用的倒排索引?

 
 

搜索+聚合,写个示例

 
 

GET /test_index/test_type/_search

{

"query": {

"match": {

"search_field": "test"

}

},

"aggs": {

"group_by_agg_field": {

"terms": {

"field": "agg_field"

}

}

}

}

 
 

纯用倒排索引来实现的弊端

 
 

es肯定不是纯用倒排索引来实现聚合+搜索的

 
 

search_field

 
 

doc1: hello world test1, test2

doc2: hello test

doc3: world        test

 
 

hello        doc1,doc2

world        doc1,doc3

test1        doc1

test2        doc1

test         doc2,doc3

 
 

"query": {

"match": {

"search_field": "test"

}

}

 
 

test --> doc2,doc3 --> search result, doc2,doc3

 
 

agg_field

 
 

doc2: agg1

doc3: agg2

 
 

 
 

100万个值

...

...

...

...

agg1        doc2

agg2        doc3

 
 

doc2, doc3, search result --> 实际上,要搜索到doc2的agg_field的值是多少,doc3的agg_field的值是多少

 
 

doc2和doc3的agg_field的值之后,就可以根据值进行分组,实现terms bucket操作

 
 

doc2的agg_field的值是多少,这个时候,如果你手上只有一个倒排索引,你该怎么办???你要扫描整个倒排索引,去一个一个的搜,拿到每个值,比如说agg1,看一下,它是不是doc2的值,拿到agg2,看一下,是不是doc2的值,直到找到doc2的agg_field的值,在倒排索引中

 
 

如果用纯倒排索引去实现聚合,现实不现实啊???性能是很低下的。。。搜索,search,搜倒排索引,搜那个term,就结束了。。。聚合,搜索出了1万个doc,每个doc都要在倒排索引中搜索出它的那个聚合field的值

 
 

倒排索引+正排索引(doc value)的原理和优势

doc value:正排索引

 
 

search_field

 
 

doc1: hello world test1, test2

doc2: hello test

doc3: world        test

 
 

hello        doc1,doc2

world        doc1,doc3

test1        doc1

test2        doc1

test         doc2,doc3

 
 

"query": {

"match": {

"search_field": "test"

}

}

 
 

test --> doc2,doc3 --> search result, doc2,doc3

 
 

doc value数据结构,正排索引

 
 

 
 

 
 

...

...

...

100万个

doc2: agg1

doc3: agg2

 
 

倒排索引的话,必须遍历完整个倒排索引才可以。。。。

 
 

因为可能你要聚合的那个field的值,是分词的,比如说hello world my name --> 一个doc的聚合field的值可能在倒排索引中对应多个value

 
 

所以说,当你在倒排索引中找到一个值,发现它是属于某个doc的时候,还不能停,必须遍历完整个倒排索引,才能说确保找到了每个doc对应的所有terms,然后进行分组聚合

 
 

...

...

...

100万个

doc2: agg1 hello world

doc3: agg2 test hello

 
 

我们有没有必要搜索完整个正排索引啊??1万个doc --> 搜 -> 可能跟搜索到15000次,就搜索完了,就找到了1万个doc的聚合field的所有值了,然后就可以执行分组聚合操作了

52.基于doc value正排索引的聚合内部原理的更多相关文章

  1. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  2. 16 doc values 【正排索引】

    搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立倒排索引, ...

  3. es倒排索引和正排索引

    搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values.在建立索引的时候,一方面会建立倒排索引, ...

  4. 正排索引(forward index)与倒排索引(inverted index) (转)

    一.正排索引(前向索引) 正排索引也称为"前向索引".它是创建倒排索引的基础,具有以下字段. (1)LocalId字段(表中简称"Lid"):表示一个文档的局部 ...

  5. 正排索引(forward index)与倒排索引(inverted index)

    正常的索引一般是指关系型数据库里的索引. 把不同的数据存放到不同的字段中.如果要实现baidu或google那种搜索,就需要与一条记录的多个字段进行比对,需要 全表扫描,如果数据量比较大的话,性能就很 ...

  6. 后端程序员之路 35、Index搜索引擎实现分析4-最终的正排索引与倒排索引

    # index_box 提供搜索功能的实现- 持有std::vector<ITEM> _buffer; 存储所有文章信息- 持有ForwardIndex _forward_index;  ...

  7. Elasticsearch的索引模块(正排索引、倒排索引、索引分析模块Analyzer、索引和搜索、停用词、中文分词器)

    正向索引的结构如下: “文档1”的ID > 单词1:出现次数,出现位置列表:单词2:出现次数,出现位置列表:…………. “文档2”的ID > 此文档出现的关键词列表. 一般是通过key,去 ...

  8. ElasticSearch(二十一)正排和倒排索引

    1.区别 搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立 ...

  9. Lucene01--倒排索引思想

    Lucene01--倒排索引思想 1. 倒排索引的概念: 首先对数据按列拆分存储,然后对文档中的数据分词,对词条进行索引,并记录词条在文档中出现的位置.这样查找时只要找到了词条,就找到了对应的文档.概 ...

随机推荐

  1. Web框架 - 开源软件库 - 开源中国社区

    网址:http://www.oschina.net/project/tag/127?lang=194

  2. BZOJ_1115_[POI2009]石子游戏Kam_博弈论

    BZOJ_1115_[POI2009]石子游戏Kam_博弈论 Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子 ...

  3. ODB——基于c++的ORM映射框架尝试(使用)

    摘要: 2.使用 首先,需要定义一个对象,用来和数据库字段对应: [cce lang=”cpp”] #ifndef VOLUME_H #define VOLUME_H #include #includ ...

  4. 8 种提升ASP.NET Web API性能的方法

    ASP.NET Web API 是非常棒的技术.编写 Web API 十分容易,以致于很多开发者没有在应用程序结构设计上花时间来获得很好的执行性能. 在本文中,我将介绍8项提高 ASP.NET Web ...

  5. codevs1669(dfs)子集和目标值

    1692 子集和的目标值  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 给定n个整数in和目标值T,求某一非空子集 ...

  6. daily_journal_2 神奇的一天

    写博客日记的第二天,第一天立的flag开始有点松动啦,继续坚持啊!坚持就是胜利. 今天真是神奇的一天,上午的计划是照常进行的,但是前天淋雨赶上风寒,又吃了新疆室友的大补特产,龙体开始感觉到不适,于是上 ...

  7. 暴力/思维 HDOJ 5386 Cover

    题目传送门 /* 题意:给出刷墙的所有的方法,求一种顺序,使得原矩阵刷成目标矩阵 暴力:(题解)我们只要每次找一行或一列颜色除了0都相同的,然后如果有对应的操作,就把这行这列都赋值成0即可 */ /* ...

  8. Android 性能优化(20)多核cpu入门:SMP Primer for Android

    SMP Primer for Android 1.In this document Theory Memory consistency models Processor consistency CPU ...

  9. CodeDOMProvider 类

    CodeDomProvider 可用来创建和检索代码生成器和代码编译器的实例.代码生成器可以生成特定语言的代码,如:C#.Visual Basic.JScript 等,而代码编译器可以将代码文件编译成 ...

  10. 【[转】MySql模糊查询

    转自:http://chenpeng.info/html/2020 MySQL提供标准的SQL模式匹配,以及一种基于象Unix实用程序如vi.grep和sed的扩展正则表达式模式匹配的格式. 一.SQ ...