Description

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds. 

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples). 

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W 

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS: 

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice. 

OUTPUT DETAILS: 

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

Source

USACO 2004 November

思路:首先,我们定义了一个num数组,其中num[0][i]表示第i分钟时第一颗树掉苹果,num[1][i]表示第i分钟时第二颗树掉苹果。

我们可以推导

1. 当j==0时,也就是说没有移动一次,dp[i][j]=dp[i-1][j]+num[0][i];

2. 当j!=0时, dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+num[j%2==1][i];其中num数组是判断他要去的那棵树是否有苹果掉下来。

大概思路就是这样,具体细节看代码。

#include<cstdio>
#include<cstring>
#include <iostream>
using namespace std;
const int maxn=1005;
int num[2][maxn],dp[maxn][35]; int main()
{
int t,w;
scanf("%d%d",&t,&w);
memset(num,0,sizeof(num));
for(int i=1;i<=t;++i)
{
int x;
scanf("%d",&x);
if(x==1) //第一颗树掉苹果
num[0][i]=1;
else //第二颗树掉苹果
num[1][i]=1;
}
memset(dp,0,sizeof(dp));
dp[1][0]=num[0][1],dp[1][1]=num[1][1]; //初始化,临界条件
for(int i=2;i<=t;++i)
{
for(int j=0;j<=w && j<=i;++j)
{
if(j==0)
dp[i][j]=dp[i-1][j]+num[0][i];
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+num[j%2==1][i];
} //转移与不转移比较,选择较大值
}
printf("%d\n",dp[t][w]);
return 0;
}

poj2385 - Apple Catching【动态规划】的更多相关文章

  1. POJ2385——Apple Catching

                                                $Apple~Catching$ Time Limit: 1000MS   Memory Limit: 6553 ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. poj2385 Apple Catching(dp状态转移方程推导)

    https://vjudge.net/problem/POJ-2385 猛刷简单dp的第一天的第一题. 状态:dp[i][j]表示第i秒移动j次所得的最大苹果数.关键要想到移动j次,根据j的奇偶判断人 ...

  4. poj2385 Apple Catching

    思路: 简单dp. 实现: #include <iostream> #include <cstdio> #include <cstring> using names ...

  5. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  6. Apple Catching(POJ 2385)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9978   Accepted: 4839 De ...

  7. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  8. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  9. 3384/1750: [Usaco2004 Nov]Apple Catching 接苹果

    3384/1750: [Usaco2004 Nov]Apple Catching 接苹果 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 18  Solv ...

随机推荐

  1. LeetCode 290. Word Pattern (词语模式)

    Given a pattern and a string str, find if str follows the same pattern. Here follow means a full mat ...

  2. poj 1190 生日蛋糕 , 强剪枝

    题意: 制作一个体积为Nπ(N<=10000)的M(M<=20)层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆 ...

  3. AutoLayout初战----Masonry与FDTemplateLayoutCell实践

    学iOS也有几个月了.一直都是纯代码开发,菜鸟入门,到今天还处在Frame时代.刚好近期项目在提审.有点时间能够学学传说中的AutoLayout.事实上.就是android的相对布局(Relative ...

  4. Ajax之XMLHttpRequst对象

    XMLHttpRequest对象提供客户端与Http服务器异步通信的协议.通过该协议,Ajax可以使页面像桌面应用程序一样,只同服务器进行数据层的交换,而不用每次都刷新页面,也不用每次将数据处理工作提 ...

  5. electron利用nodejs+移动端技术跨平台桌面应用开发框架——记录下,类似node webkit!

    Build cross platform desktop appswith JavaScript, HTML, and CSS Electron: 1.6.8Node: 7.4.0Chromium:  ...

  6. windows下写的脚本,在linux下执行失败

    Windows中的换行符为CRLF, 即正则表达式的rn(ASCII码为13和10), 而Unix(或Linux)换行符为LF, 即正则表达式的n. 在Windows和Linux下协同工作的时候, 往 ...

  7. 使用centos 5.x 64位系统安装astgo 2014 v7.3教程(含全套安装文件)

    版本特色: 全自动安装 安装过程中不用频繁输入yes或回车 自带完整号码归属地数据库 自带触屏版WAP ·首先确定你需要使用astgo 2014 7.0还是7.3: astgo 2014 v 7.0 ...

  8. 将本地文件复制到hadoop文件系统

    package com.yoyosys.cebbank.bdap.service.mr; import java.io.BufferedInputStream; import java.io.File ...

  9. PCB 录屏工具Screen2Exe GifCam ScreenToGif

    我们完成的软件作品后,需要向客户或领导演示软件功能介绍,这里力推3款录屏工具 一.Screen2Exe工具,录制exe视频文件 下载地址  http://pcbren.cn/ShareFiles/Sc ...

  10. PCB MongoDB 索引

    在索引在数据库中非常重要,当然在MongoDB也是一样啦. 一.获取索引 db.ppeflow.getIndexes() 初始化,每个集都默认_id字段为主键objectid,索引名为_id_ 二.创 ...