poj2385 - Apple Catching【动态规划】
Description
It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Line 1: Two space separated integers: T and W
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
* Line 1: The maximum number of apples Bessie can catch without walking more than W times.
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
INPUT DETAILS:
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
Source
思路:首先,我们定义了一个num数组,其中num[0][i]表示第i分钟时第一颗树掉苹果,num[1][i]表示第i分钟时第二颗树掉苹果。
我们可以推导
1. 当j==0时,也就是说没有移动一次,dp[i][j]=dp[i-1][j]+num[0][i];
2. 当j!=0时, dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+num[j%2==1][i];其中num数组是判断他要去的那棵树是否有苹果掉下来。
大概思路就是这样,具体细节看代码。
#include<cstdio>
#include<cstring>
#include <iostream>
using namespace std;
const int maxn=1005;
int num[2][maxn],dp[maxn][35];
int main()
{
int t,w;
scanf("%d%d",&t,&w);
memset(num,0,sizeof(num));
for(int i=1;i<=t;++i)
{
int x;
scanf("%d",&x);
if(x==1) //第一颗树掉苹果
num[0][i]=1;
else //第二颗树掉苹果
num[1][i]=1;
}
memset(dp,0,sizeof(dp));
dp[1][0]=num[0][1],dp[1][1]=num[1][1]; //初始化,临界条件
for(int i=2;i<=t;++i)
{
for(int j=0;j<=w && j<=i;++j)
{
if(j==0)
dp[i][j]=dp[i-1][j]+num[0][i];
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+num[j%2==1][i];
} //转移与不转移比较,选择较大值
}
printf("%d\n",dp[t][w]);
return 0;
}
poj2385 - Apple Catching【动态规划】的更多相关文章
- POJ2385——Apple Catching
$Apple~Catching$ Time Limit: 1000MS Memory Limit: 6553 ...
- poj2385 Apple Catching (线性dp)
题目传送门 Apple Catching Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 154 ...
- poj2385 Apple Catching(dp状态转移方程推导)
https://vjudge.net/problem/POJ-2385 猛刷简单dp的第一天的第一题. 状态:dp[i][j]表示第i秒移动j次所得的最大苹果数.关键要想到移动j次,根据j的奇偶判断人 ...
- poj2385 Apple Catching
思路: 简单dp. 实现: #include <iostream> #include <cstdio> #include <cstring> using names ...
- 【POJ - 2385】Apple Catching(动态规划)
Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...
- Apple Catching(POJ 2385)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9978 Accepted: 4839 De ...
- Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9831 Accepted: 4779 De ...
- BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )
dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...
- 3384/1750: [Usaco2004 Nov]Apple Catching 接苹果
3384/1750: [Usaco2004 Nov]Apple Catching 接苹果 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 18 Solv ...
随机推荐
- Android 布局属性大全
常用属性汇总: android:hint 设置EditText为空时输入的提示信息 android:gravity 对该view内容的限定:靠上 下 左 右 andro ...
- Spark SQL中 RDD 转换到 DataFrame (方法二)
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...
- gulp的使用安装
gulp安装:用cnpm的时候把npm换成cnpm就好了. npm install -g gulp(全局安装,安装一次就好) npm install --save-dev gulp(安装到项目目录下, ...
- 使用php实现二叉搜索树
看到一位大神写的js的搜索树,自己也按照模式写了一个php的二叉搜索树. <?phpclass node{ public $data; public $key; public $left=nul ...
- [Swift通天遁地]六、智能布局-(2)视图对象的尺寸和位置相对约束
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- selenium3 + python - action_chains源码分析
ActionChains简介 actionchains是selenium里面专门处理鼠标相关的操作如:鼠标移动,鼠标按钮操作,按键和上下文菜单(鼠标右键)交互.这对于做更复杂的动作非常有用,比如悬停和 ...
- Akka源码分析-Cluster-ActorSystem
前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方 ...
- Akka源码分析-Actor创建
上一篇博客我们介绍了ActorSystem的创建过程,下面我们就研究一下actor的创建过程. val system = ActorSystem("firstActorSystem" ...
- Linux搭建tomcat文件服务器
Linux搭建tomcat文件服务器 Linux下配置Tomcat服务器和Windows下其实差不多,可以去官网下载安装包释放或者在线下载,只是当时下载的windows.zip文件,现在下载.tar. ...
- BZOJ 1129 exgcd+CRT+线段树
思路: 先copy一下百度百科 作为预备知识吧多重全排列定义:求r1个1,r2个2,…,rt个t的排列数,设r1+r2+…+rt=n,设此排列数称为多重全排列,表示为$P(n;r1,r2,…,rt)$ ...