题目背景

盛况空前的足球赛即将举行。球赛门票售票处排起了球迷购票长龙。

按售票处规定,每位购票者限购一张门票,且每张票售价为50元。在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值100元的钱币。假设售票处在开始售票时没有零钱。试问这2N个球迷有多少种排队方式可使售票处不致出现找不出钱的尴尬局面。

题目描述

例如当n=2是,用A表示手持50元面值的球迷,用B表示手持100元钱的球迷。则最多可以得到以下两组不同的排队方式,使售票员不至于找不出钱。

第一种:A A B B

第二种:A B A B

[编程任务]

对于给定的n (0≤n≤20),计算2N个球迷有多少种排队方式,可以使售票处不至于找不出钱。

输入输出格式

输入格式:

一个整数,代表N的值

输出格式:

一个整数,表示方案数

输入输出样例

输入样例#1:

2
输出样例#1: 
   2
 

Solution

这是道我都能秒切的水题.然后关于这个题,有两个解法.

1. 数学

这个就是赤裸裸的卡特兰数.不解释.

只上一个卡特兰数的公式.

2. DP

状态定义:

f [ i ][ j ] 表示前 i 个人里面 有 j 张50 的.


然后决策有两种.

第一 拿100的

 f[i][j]+=f[i-1][j-1];

第二 拿50的

f [ i ] [ j ]+=f [ i - 1 ] [ j + 1 ];

代码

只写了卡特兰.

#include<iostream>
using namespace std;
typedef long long ll;
int n;
ll cat[];
int main()
{
cin>>n;
cat[]=cat[]=;
for(int i=;i<=n;++i)
cat[i]=cat[i-]*(*i-)/(i+);
//卡特兰递推
cout<<cat[n];
return ;
}

P1754 球迷购票问题 (卡特兰数,递推)的更多相关文章

  1. Buy the Ticket(卡特兰数+递推高精度)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...

  2. HDU——2067小兔的棋盘(卡特兰数&递推DP)

    小兔的棋盘 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  3. 洛谷 P1754 球迷购票问题

    P1754 球迷购票问题 题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的 ...

  4. Luogu P1754球迷购票问题【dp/卡特兰数】By cellur925

    题目传送门 虽然是水dp,但我感到还是有些无从下手== f[i][j]表示还剩i个50元没考虑,j个100元没考虑的方案数,可有转移f[i][j]=f[i-1][j]+f[i][j-1] 但其实它也可 ...

  5. 洛谷——P1754 球迷购票问题

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

  6. 【洛谷P1754 球迷购票问题】题解

    传送门 卡特兰数经典 \(\texttt{AB}\) 分拆问题. 分析: 题意相当于排列 \(n\) 个 \(\texttt A\) 和 \(n\) 个 \(\texttt B\),使得相邻 \(\t ...

  7. P1754 球迷购票问题

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

  8. 【洛谷】P1754 球迷购票问题(基础dp)

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

  9. ACM_数数有多少(第二类Stirling数-递推dp)

    数数有多少 Time Limit: 2000/1000ms (Java/Others) Problem Description: 小财最近新开了一家公司,招了n个员工,但是因为资金问题,办公楼只有m间 ...

随机推荐

  1. Jenkins怎么启动和停止服务

    笔者没有把Jenkins配置到tomcat中,每次都是用命令行来启动Jenkins.但是遇到一个问题:Jenkins一直是开着的,想关闭也关闭不了.百度了一些资料,均不靠谱(必须吐槽一下百度).于是进 ...

  2. sql语句执行碰到的问题

    问题:传递给 LEFT 或 SUBSTRING 函数的长度参数无效 原因:在LEFT或SUBSTRING  中计算出来的长度是负数导致的 解决方法: 1)逐个排查法,2)先把语句执行一下,查看中断的地 ...

  3. java字符串拼接技巧(StringBuilder使用技巧)

    在平时的开发中,我们可能会遇到需要拼接如下格式的字符串(至少我是遇到了很多次): 1,2,3,4,5,6,7,8,9,10,11,12,12,12,12,34,234,2134,1234,1324,1 ...

  4. synchronized关键字修饰非静态方法与静态方法的区别

    这里我们先创建ObjLock类,并实现Runnable接口.并创建一个Demo类,具有被synchronized关键字修饰的非静态方法与静态方法. 非静态方法 public class ObjLock ...

  5. WPF中的TextBlock处理长字符串

    Xaml: <StackPanel> <TextBlock Margin="10" Foreground="Red"> This is ...

  6. vue2.0动画

    相对于vue1.0来说,vue2.0的动画变化还是挺大的, 在1.0中,直接在元素中加 transition ,后面跟上名字. 而在vue2.0中,需要把设置动画的元素.路由放在<transit ...

  7. 监控linux各主机系统时间是否一致

    #!/bin/bashSTATE_OK=0 STATE_WARNING=1 STATE_CRITICAL=2 STATE_UNKNOWN=3PASSWD='**************'print_h ...

  8. ios retain copy 以及copy协议

    阅读本文之前首先了解Copy与Retain的区别: Copy是创建一个新对象,Retain是创建一个指针,引用对象计数加1. Copy属性表示两个对象内容相同,新的对象retain为1 ,与旧有对象的 ...

  9. struts2命名空间与访问路径

    比如项目deom的struts.xml中有如下片段 Java代码 <package name="demo" extends="struts-default" ...

  10. Linux文件权限与文件夹权限实践

    文件权限在基础中有介绍,不在重复 一.文件夹权限: 示例: 解释说明: r --read 既ls w --write     既创建新的目录或者文件 x --execute 既cd 现在有4个用户分属 ...