«问题描述:
给定一个由n 行数字组成的数字梯形如下图所示。梯形的第一行有m 个数字。从梯形
的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶
至底的路径。
规则1:从梯形的顶至底的m条路径互不相交。
规则2:从梯形的顶至底的m条路径仅在数字结点处相交。
规则3:从梯形的顶至底的m条路径允许在数字结点相交或边相交。

«编程任务:
对于给定的数字梯形,分别按照规则1,规则2,和规则3 计算出从梯形的顶至底的m
条路径,使这m条路径经过的数字总和最大。
«数据输入:
由文件digit.in提供输入数据。文件的第1 行中有2个正整数m和n(m,n<=20),分别
表示数字梯形的第一行有m个数字,共有n 行。接下来的n 行是数字梯形中各行的数字。
第1 行有m个数字,第2 行有m+1 个数字,…。
«结果输出:
程序运行结束时,将按照规则1,规则2,和规则3 计算出的最大数字总和输出到文件
digit.out中。每行一个最大总和。
输入文件示例 输出文件示例
digit.in
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1

1 1 10 12 1 1

digit.out

66
75
77

/*
第一个建图就是拆点(保证每个点只走一次),第二个建图是把两个点之间的边设为1,第三个inf随意搞。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 4010
#define inf 1000000000
using namespace std;
int a[N][N],head[N],dis[N],inq[N],fa[N],n,m,num,cnt,S,T;
struct node{int u,v,pre,f,w;}e[N];
void add(int u,int v,int f,int w){
e[++cnt].u=u;e[cnt].v=v;e[cnt].f=f;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].u=v;e[cnt].v=u;e[cnt].f=;e[cnt].w=-w;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
for(int i=;i<=T;i++) dis[i]=inf;
queue<int> q;q.push(S);inq[S]=;dis[S]=;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(e[i].f&&dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
fa[e[i].v]=i;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
return dis[T]!=inf;
}
void mincost(){
int cost=;
while(spfa()){
int tmp=fa[T],x=inf;
while(tmp){ int u=e[tmp].u; x=min(x,e[tmp].f);
tmp=fa[e[tmp].u];
}
tmp=fa[T];
while(tmp){
e[tmp].f-=x;
e[tmp^].f+=x;
tmp=fa[e[tmp].u];
}
cost+=x*dis[T];
}
printf("%d\n",-cost);
}
int hao(int i,int j){
return (m*+i-)*(i-)/+j;
}
void build1(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j)+num,hao(i+,j),,-a[i+][j]),add(hao(i,j)+num,hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i)+num,T,,);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i,j)+num,,); }
void build2(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),,-a[i+][j]),add(hao(i,j),hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
void build3(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),inf,-a[i+][j]),add(hao(i,j),hao(i+,j+),inf,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
int main(){
scanf("%d%d",&m,&n);num=(m*+n-)*n/;
S=;T=num*+;
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
scanf("%d",&a[i][j]);
build1();mincost();
build2();mincost();
build3();mincost();
return ;
}

数字梯形(cogs 738)的更多相关文章

  1. COGS738 [网络流24题] 数字梯形(最小费用最大流)

    题目这么说: 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径.规则1:从梯形的 ...

  2. 【wikioi】1913 数字梯形问题(费用流)

    http://wikioi.com/problem/1913/ 如果本题没有询问2和3,那么本题和蚯蚓那题一模一样.http://www.cnblogs.com/iwtwiioi/p/3935039. ...

  3. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...

  4. codevs 1913 数字梯形问题 费用流

    题目链接 给你一个数字梯形, 最上面一层m个数字, 然后m+1,......m+n-1个. n是层数. 在每个位置, 可以向左下或右下走.然后让你从最顶端的m个数字开始, 走出m条路径, 使得路过的数 ...

  5. P4013 数字梯形问题 网络流

    题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 mm 个数字.从梯形的顶部的 mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别 ...

  6. 【刷题】LOJ 6010 「网络流 24 题」数字梯形

    题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...

  7. Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)

    Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...

  8. P4013 数字梯形问题 网络流二十四题

    P4013 数字梯形问题 题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形 ...

  9. 【费用流】【网络流24题】【P4013】 数字梯形问题

    Description 给定一个由 \(n\) 行数字组成的数字梯形如下图所示. 梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成 ...

随机推荐

  1. Ubuntu 14.04 配置confluence破解

    1. 配置java环境,请参展我的另一篇博客 http://www.cnblogs.com/youran-he/p/8607155.html 2. 下载文件 https://pan.baidu.com ...

  2. Spring Boot配置文件大全

    Spring Boot配置文件大全 ############################################################# # mvc ############## ...

  3. Ace 在Vue中使用方法

    var Vue = require('vue/dist/vue.common.js'); document.querySelector('body').append(document.createEl ...

  4. Codeforces Round #277.5 (Div. 2)-D. Unbearable Controversy of Being

    http://codeforces.com/problemset/problem/489/D D. Unbearable Controversy of Being time limit per tes ...

  5. MAC环境Android SDK环境变量配置

    一.材料 1.Mac设备1台: 2.下载并更新android SDK:示列中sdk存放路径为/Users/gametest/Library/Android/sdk 二.操作步骤 1.启动Termina ...

  6. CVE-2010-3333

    环境 windows xp sp3 office 2003 sp0 windbg ollydbg vmware 12.0 0x00 RTF格式 RTF是Rich TextFormat的缩写,意即富文本 ...

  7. Bootstrap历练实例:表单控件状态(禁用)

    禁用的输入框 input 如果您想要禁用一个输入框 input,只需要简单地添加 disabled 属性,这不仅会禁用输入框,还会改变输入框的样式以及当鼠标的指针悬停在元素上时鼠标指针的样式. < ...

  8. 【转发】【linux】【php】centos 编译php常见错误

    configure: error: xml2-config not found. Please check your libxml2 installation. yum install libxml2 ...

  9. linux定时任务执行php任务

    首先用命令检查服务是否在运行 systemctl status crond.service 如果服务器上没有装有crontab ,则可以执行 yum install vixie-cron yum in ...

  10. 力扣题目汇总(反转字符串中的单词,EXCEL表列序号,旋置矩阵)

    反转字符串中的单词 III 1.题目描述 给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. 示例 1: 输入: "Let's take LeetCode ...