«问题描述:
给定一个由n 行数字组成的数字梯形如下图所示。梯形的第一行有m 个数字。从梯形
的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶
至底的路径。
规则1:从梯形的顶至底的m条路径互不相交。
规则2:从梯形的顶至底的m条路径仅在数字结点处相交。
规则3:从梯形的顶至底的m条路径允许在数字结点相交或边相交。

«编程任务:
对于给定的数字梯形,分别按照规则1,规则2,和规则3 计算出从梯形的顶至底的m
条路径,使这m条路径经过的数字总和最大。
«数据输入:
由文件digit.in提供输入数据。文件的第1 行中有2个正整数m和n(m,n<=20),分别
表示数字梯形的第一行有m个数字,共有n 行。接下来的n 行是数字梯形中各行的数字。
第1 行有m个数字,第2 行有m+1 个数字,…。
«结果输出:
程序运行结束时,将按照规则1,规则2,和规则3 计算出的最大数字总和输出到文件
digit.out中。每行一个最大总和。
输入文件示例 输出文件示例
digit.in
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1

1 1 10 12 1 1

digit.out

66
75
77

/*
第一个建图就是拆点(保证每个点只走一次),第二个建图是把两个点之间的边设为1,第三个inf随意搞。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 4010
#define inf 1000000000
using namespace std;
int a[N][N],head[N],dis[N],inq[N],fa[N],n,m,num,cnt,S,T;
struct node{int u,v,pre,f,w;}e[N];
void add(int u,int v,int f,int w){
e[++cnt].u=u;e[cnt].v=v;e[cnt].f=f;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].u=v;e[cnt].v=u;e[cnt].f=;e[cnt].w=-w;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
for(int i=;i<=T;i++) dis[i]=inf;
queue<int> q;q.push(S);inq[S]=;dis[S]=;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(e[i].f&&dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
fa[e[i].v]=i;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
return dis[T]!=inf;
}
void mincost(){
int cost=;
while(spfa()){
int tmp=fa[T],x=inf;
while(tmp){ int u=e[tmp].u; x=min(x,e[tmp].f);
tmp=fa[e[tmp].u];
}
tmp=fa[T];
while(tmp){
e[tmp].f-=x;
e[tmp^].f+=x;
tmp=fa[e[tmp].u];
}
cost+=x*dis[T];
}
printf("%d\n",-cost);
}
int hao(int i,int j){
return (m*+i-)*(i-)/+j;
}
void build1(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j)+num,hao(i+,j),,-a[i+][j]),add(hao(i,j)+num,hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i)+num,T,,);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i,j)+num,,); }
void build2(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),,-a[i+][j]),add(hao(i,j),hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
void build3(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),inf,-a[i+][j]),add(hao(i,j),hao(i+,j+),inf,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
int main(){
scanf("%d%d",&m,&n);num=(m*+n-)*n/;
S=;T=num*+;
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
scanf("%d",&a[i][j]);
build1();mincost();
build2();mincost();
build3();mincost();
return ;
}

数字梯形(cogs 738)的更多相关文章

  1. COGS738 [网络流24题] 数字梯形(最小费用最大流)

    题目这么说: 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径.规则1:从梯形的 ...

  2. 【wikioi】1913 数字梯形问题(费用流)

    http://wikioi.com/problem/1913/ 如果本题没有询问2和3,那么本题和蚯蚓那题一模一样.http://www.cnblogs.com/iwtwiioi/p/3935039. ...

  3. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...

  4. codevs 1913 数字梯形问题 费用流

    题目链接 给你一个数字梯形, 最上面一层m个数字, 然后m+1,......m+n-1个. n是层数. 在每个位置, 可以向左下或右下走.然后让你从最顶端的m个数字开始, 走出m条路径, 使得路过的数 ...

  5. P4013 数字梯形问题 网络流

    题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 mm 个数字.从梯形的顶部的 mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别 ...

  6. 【刷题】LOJ 6010 「网络流 24 题」数字梯形

    题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...

  7. Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)

    Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...

  8. P4013 数字梯形问题 网络流二十四题

    P4013 数字梯形问题 题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形 ...

  9. 【费用流】【网络流24题】【P4013】 数字梯形问题

    Description 给定一个由 \(n\) 行数字组成的数字梯形如下图所示. 梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成 ...

随机推荐

  1. CNNs 在图像分割中应用简史: 从R-CNN到Mask R-CNN

    作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/6756024.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...

  2. Android计算器布局

    Android(安桌)计算器布局实现         ——解决整个屏幕方案 引言:     学完了android布局的几种方式,做了一个android计算器. 我在网上搜索了这方面的资料,发现了布局都 ...

  3. JAVA 数据库编程中的性能优化

    1. 禁止自动提交:在默认情况下,程序执行的任何sql 语句都是自动提交的向一个表中插入2000条记录,自动提交所用的时间  11666毫秒禁止自动提交(显示提交) 3450毫秒 2. 批处理:多用批 ...

  4. Kubernetes介绍与特性

    1.Kubernetes 是什么 简单的来说,k8s可以理解为,一个容器平台,一个微服务平台,便携式云平台,我们那可以很快速的搭建一个服务,快速的运行起来 2.Kubernetes特性

  5. javascript基本数据类型问题汇总

    isNaN()检测是否是NaN: 比较浮点相等,用绝对值,是否小于某一个阈值 Math.abs(1/3 - (1-2/3))<0.0000001: 字符串多行显示\n,ES6中使用反引号``: ...

  6. 人脸识别中的检测(在Opencv中加入了QT)

    #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include & ...

  7. 安装ruby开发环境

    如何快速正确的安装 Ruby, Rails 运行环境 对于新入门的开发者,如何安装 Ruby, Ruby Gems 和 Rails 的运行环境可能会是个问题,本页主要介绍如何用一条靠谱的路子快速安装 ...

  8. [LUOGU] P1908 逆序对

    题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为"逆序对"的 ...

  9. python 连接redis cluster

    #!/usr/bin/env python # encoding: utf-8 #@author: 东哥加油! #@file: clear_pool.py #@time: 2018/8/28 17:0 ...

  10. 【mysql】返回非空值 COALESCE 用法

    在mysql中,其实有不少方法和函数是很有用的,这次介绍一个叫coalesce的,拼写十分麻烦,但其实作用是将返回传入的参数中第一个非null的值,比如 SELECT COALESCE(NULL, N ...