题目

打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中。玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高。

游戏中的锤子每次只能打一只地鼠,如果多只地鼠同时探出头,玩家只能通过多次挥舞锤子的方式打掉所有的地鼠。你认为这锤子太没用了,所以你改装了锤子,增加了锤子与地面的接触面积,使其每次可以击打一片区域。如果我们把地面看做MN的方阵,其每个元素都代表一个地鼠洞,那么锤子可以覆盖RC区域内的所有地鼠洞。但是改装后的锤子有一个缺点:每次挥舞锤子时,对于这RC的区域中的所有地洞,锤子会打掉恰好一只地鼠。也就是说锤子覆盖的区域中,每个地洞必须至少有1只地鼠,且如果某个地洞中地鼠的个数大于1,那么这个地洞只会有1只地鼠被打掉,因此每次挥舞锤子时,恰好有RC只地鼠被打掉。由于锤子的内部结构过于精密,因此在游戏过程中你不能旋转锤子(即不能互换R和C)。

你可以任意更改锤子的规格(即你可以任意规定R和C的大小),但是改装锤子的工作只能在打地鼠前进行(即你不可以打掉一部分地鼠后,再改变锤子的规格)。你的任务是求出要想打掉所有的地鼠,至少需要挥舞锤子的次数。

Hint:由于你可以把锤子的大小设置为1*1,因此本题总是有解的。

输入格式

第一行包含两个正整数M和N;

下面M行每行N个正整数描述地图,每个数字表示相应位置的地洞中地鼠的数量。

输出格式

输出一个整数,表示最少的挥舞次数。

输入样例

3 3

1 2 1

2 4 2

1 2 1

输出样例

4

提示

【样例说明】

使用2*2的锤子,分别在左上、左下、右上、右下挥舞一次。

【数据规模和约定】

对于100%的数据,1<=M,N<=100,其他数据不小于0,不大于10^5

题解

模拟加一些优化

直接枚举锤子长宽检验

优化:

①锤子面积一定是地鼠总和的因子

②覆盖当前左上角的地鼠方式唯一固定

③如果地鼠总和除以锤子面积不比当前答案优,不检验

虽然说是\(O(n^6)\)

但实际并没有那么多

小非常多

玄学地过了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int sum,s[maxn][maxn],t[maxn][maxn],n,m,r,c,cnt,ans = INF;
void check(){
REP(i,n) REP(j,m) t[i][j] = s[i][j];
REP(i,n) REP(j,m){
if (i + r - 1 > n || j + c - 1 > m){
if (t[i][j]) return;
continue;
}
else if (t[i][j]){
int tmp = t[i][j];
for (int x = 0; x < r; x++)
for (int y = 0; y < c; y++){
if (t[i + x][j + y] < tmp) return;
t[i + x][j + y] -= tmp;
}
}
}
ans = min(ans,sum / (r * c));
}
int main(){
n = read(); m = read();
REP(i,n) REP(j,m) sum += (s[i][j] = read());
for (r = 1; r <= n; r++)
for (c = 1; c <= m; c++)
if (sum % (r * c) == 0 && sum / (r * c) < ans)
check();
printf("%d\n",ans);
return 0;
}

BZOJ2241 [SDOI2011]打地鼠 【模拟】的更多相关文章

  1. Luogu P2484 [SDOI2011]打地鼠(模拟+前缀和)

    P2484 [SDOI2011]打地鼠 题意 题目描述 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地 ...

  2. bzoj2241: [SDOI2011]打地鼠

    暴力. O(n^6)暴力卡过,72ms. 莫名其妙做这道题时感觉十分烦躁,难受,只能这样了. O(n^4)的方法是这样差分一下.判断的时候tmp=t[i][j],t[i][j]-=tmp,t[i+r] ...

  3. BZOJ 2241: [SDOI2011]打地鼠 暴力

    2241: [SDOI2011]打地鼠 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  4. Bzoj 2241: [SDOI2011]打地鼠 暴力,枚举,贪心

    2241: [SDOI2011]打地鼠 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1022  Solved: 651[Submit][Status ...

  5. 【BZOJ2484】[SDOI2011]打地鼠(暴力)

    [BZOJ2484][SDOI2011]打地鼠(暴力) 题面 BZOJ 洛谷 题解 看到数据范围这题就应该是一个暴力题了. 先考虑假如我们知道了锤子的大小\(R*C\),那么显然只需要从左上角开始从左 ...

  6. 洛谷P2484 [SDOI2011]打地鼠

    P2484 [SDOI2011]打地鼠 题目描述 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多 ...

  7. 2241. [SDOI2011]打地鼠【暴力+剪枝】

    Description 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高. 游戏中的锤 ...

  8. [SDOI2011]打地鼠

    题目描述 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高. 游戏中的锤子每次只能打一 ...

  9. [BZOJ 2241][SDOI2011]打地鼠(枚举+预处理)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2241 分析: 鉴于R,C的取值很小,于是可以人为枚举R和C的大小,然后判定这个规格的锤 ...

随机推荐

  1. RAM建模和初始化

    冯诺依曼提出的存储计算,计算存储,因此,几乎所有的CPU和ASIC都会使用存储器,它们的类型很多,包括异步RAM.同步RAM.ZBT RAM.DDR DRAM.ROM等.由于大部分的异步RAM和SRA ...

  2. 基于 Azure IaaS 搭建企业官网的规划和实践

    本课程主要介绍了基于 Azure IaaS 搭建企业官网的案例分析和实践,实践讲解如何使用 Azure 门户创建虚拟机, 创建虚拟网络, 创建存储账户等. 具体包括项目背景介绍, 项目架构, 准备和实 ...

  3. jmeter中文件上传配置

  4. 初习mysql procedure

    1.存储过程简介 我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的SQL语句集,经编译后存储在数据库中,用户 ...

  5. 一个制作Xcode5插件的模板

    原Github地址:https://github.com/kattrali/Xcode5-Plugin-Template 安装将 本工成复制到~/Library/Developer/Xcode/Tem ...

  6. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  7. PE基础2

    PE课程002 怎么找到Nt头? (PIMAGE_NT_HEADER)(DOS.e_lfanew + (DWORD)m_pBuff) 怎么找到第一个区段表? 区段头位置 = pNt + 4 + 文件头的 ...

  8. fckeditor配置详解

    使用配置设置: . FCKConfig.CustomConfigurationsPath = '' ; // 自定义配置文件路径和名称 . FCKConfigFCKConfig.EditorAreaC ...

  9. Codeforces 1012A Photo of The Sky

    作为一个蒟蒻,\(\tt{CF}\)止步\(Div.2\;C\) 这个题主要考察思维,正解代码炒鸡短-- 以下大部分搬运自官方题解 题目大意: 给你一段长度为\(2n\)的数列,将这个数列分为两个可重 ...

  10. ios xmpp demo

    为了方便程序调用,我们把XMPP的一些主要方法写在AppDelegate中 在AppDelegate.m下这几个方法为: [java] view plaincopy -(void)setupStrea ...