BZOJ 3158 千钧一发 最小割
分析:
偶数对满足条件2,所有奇数对满足条件1。
如果你能一眼看出这个规律,这道题就完成了一半。
我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为b值的边。
暴力枚举,对于奇集合和偶集合中不能共存的两个数,连容量为无穷大的边。
求出最小割,代表这个割集要被我们舍弃。
然后直接用b值总和减去最小割就好。
代码:
#include<bits/stdc++.h>
#define ms(a,x) memset(a,x,sizeof(a))
#define pf(x) (1LL*x*x)
#define ll long long
using namespace std;
const int N=,M=,inf=0x3f3f3f3f;
struct node{int y,z,nxt;}e[M*];int S,T,tot=;
int d[N],h[N],c=,a[N],b[N],q[N],n,m;ll s[N];
int gcd(int x,int y){
return y?gcd(y,x%y):x;
} bool pd(ll x){
ll y=sqrt(x);return y*y!=x;
} void add(int x,int y,int z){
e[++c]=(node){y,z,h[x]};h[x]=c;
e[++c]=(node){x,,h[y]};h[y]=c;
} bool bfs(){
int f=,t=;ms(d,-);
q[++t]=S;d[S]=;
while(f<=t){
int x=q[f++];
for(int i=h[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==-&&e[i].z)
d[y]=d[x]+,q[++t]=y;
} return (d[T]!=-);
} int dfs(int x,int f){
if(x==T) return f;int w,tmp=;
for(int i=h[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==d[x]+&&e[i].z){
w=dfs(y,min(e[i].z,f-tmp));
if(!w) d[y]=-;
e[i].z-=w;e[i^].z+=w;tmp+=w;
if(tmp==f) return f;
} return tmp;
} void dinic(){
while(bfs()) tot+=dfs(S,inf);
} signed main(){
scanf("%d",&n);int ans=;S=;T=n+;
for(int i=;i<=n;i++)
scanf("%d",&a[i]),s[i]=pf(a[i]);
for(int i=;i<=n;i++)
scanf("%d",&b[i]),ans+=b[i];
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(gcd(a[i],a[j])==&&!pd(s[i]+s[j]))
a[i]&?add(i,j,inf):add(j,i,inf);
for(int i=;i<=n;i++)
a[i]&?add(S,i,b[i]):add(i,T,b[i]);
dinic();printf("%d\n",ans-tot);
return ;
}
最小割
BZOJ 3158 千钧一发 最小割的更多相关文章
- bzoj 3158 千钧一发 —— 最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...
- bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
- bzoj 3158: 千钧一发【最小割】
这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
- BZOJ 3158: 千钧一发
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1201 Solved: 446[Submit][Status][Discuss ...
- bzoj 3158 千钧一发——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)
题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
- Groupby 方法语法
对序列进行分类汇总,汇总后产生的序列的key就是按照某个字段汇总的项 .groupby select Viewmodel三者常一起使用,用于统计.groupby 方法语法常与select 子句形成数据 ...
- c的free注意事项和c++的简洁(析构大哥)
#include <iostream> using namespace std; // ////c语言版本 //struct stu //{ // char *name; // int a ...
- JS 数据类型入门与typeof操作符
标准的数据类型划分: 基本类型: number(数字).string(字符串).undefined.boolean(布尔值).null(空对象) //空对象与非空对象,最大的区别就是不能进行属性操作 ...
- Tree Recovery POJ - 2255
Tree Recovery POJ - 2255 根据树的前序遍历和中序遍历还原后序遍历. (偷懒用了stl的find) #include<iostream> #include<st ...
- 221 Maximal Square 最大正方形
在一个由0和1组成的二维矩阵内,寻找只包含1的最大正方形,并返回其面积.例如,给出如下矩阵:1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0返回 4. 详见:https://l ...
- [转]在ASP.NET MVC3中使用EFCodeFirst 1.0
本文转自:http://kb.cnblogs.com/page/97003/ 作者: NinoFocus 来源: 博客园 发布时间: 2011-04-12 10:41 阅读: 11971 次 ...
- java封装的优点
在面向对象程式设计方法中,封装(英语:Encapsulation)是指一种将抽象性函式接口的实现细节部份包装.隐藏起来的方法. 封装可以被认为是一个保护屏障,防止该类的代码和数据被外部类定义的代码随机 ...
- AJPFX关于Collection 集合的表述
集合的遍历class Demo_Collection{ public static void main(String[] args){ Collection c = new ...
- (二)Spring容器
大佬总结的很好,请去看大佬博客. http://www.cnblogs.com/chenssy/archive/2012/11/15/2772287.html https://www.cnblogs. ...
- Elasticsearch--集群管理_时光机&监控
目录 Elasticsearch时光机 创建快照存储库 清理:删除旧的快照 监控集群状态和健康度 集群健康度API 索引统计API 状态API 节点信息API 节点统计API 集群状态API 挂起任务 ...