title: 【线性代数】6-6:相似矩阵(Similar Matrices)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Similar Matrices
  • Jordan Form
  • Eigenvalues
  • Eigenvectors

    toc: true

    date: 2017-11-29 09:08:12

Abstract: 本文主要介绍根据矩阵对角化以及特征值引出的相似矩阵的性质和特点

Keywords: Similar Matrices,Jordan Form,Eigenvalues,Eigenvectors

开篇废话

一篇一度的废话开始了,谎言和真想到底有什么区别?其实没什么区别,如果你相信谎言不去怀疑,那么你就可以生活在谎言所构造的世界中,或者你想探索真理,那么你就要接受一个有一个残酷的现实,就是你一直被欺骗,而且很多东西已经形成的错误的习惯,那么这个可能很难纠正,两个世界都能承载人的一生,红药丸,蓝药丸,你可以自己选择,对于什么监控坏了,官方辟谣,这些话可能是真的,也可能是假的,所以可以信也可以不信,至于信与不信不过是吃完饭后的谈资而已。

特征值特征向量这一章是线性代数的高潮部分,可以说是高潮迭起,这部分相比四个子空间部分可能逻辑性更强一点,需要前后联通,只看一部分肯定要掉坑,所以这几篇写的都非常多,今天的相似矩阵是对角化引出的另一个重要分支,但是篇幅不大。

在研究这一章的时候总感觉Prof. Strang写的很细致,可以很容易的帮你知道什么是什么但是如果想了解点深入的背后的东西,由于篇幅限制(可以看出老先生有意的控制篇幅,并没有长的长的短的短,所有章节长度基本相同)没有深入讨论,也可能线性代数的introduction仅限于这些,更深入的话可能就是另一门课了,所以后续可能出个矩阵论或者矩阵分析类的系列博客。

Similar Matrices

Similar相似,但又不同,如果说某两件事物相似,那么必然有相似点,也就是这两件事物的某一属性,或者某几个属性一致,那么如果说两个矩阵相似,有可能是形状,比如上三角矩阵,对角矩阵,这些矩阵都有相同的属性,我们这里定义矩阵相似–拥有相同的特征值。

本章我们研究的主要内容是矩阵的对角化,对角化的前提是有足够的特征向量,也就是说如果某个矩阵特征向量不足,那么就没办法产生特征向量矩阵SSS 那么我们就不研究他们了,

【线性代数】6-6:相似矩阵(Similar Matrices)的更多相关文章

  1. 【线性代数】6-4:对称矩阵(Symmetric Matrices)

    title: [线性代数]6-4:对称矩阵(Symmetric Matrices) categories: Mathematic Linear Algebra keywords: Eigenvalue ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 【Math for ML】矩阵分解(Matrix Decompositions) (上)

    I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...

  4. AI数学基础之:奇异值和奇异值分解

    目录 简介 相似矩阵 对角矩阵 可对角化矩阵 特征值 特征分解 特征值的几何意义 奇异值 Singular value 奇异值分解SVD 简介 奇异值是矩阵中的一个非常重要的概念,一般是通过奇异值分解 ...

  5. 【线性代数】6-5:正定矩阵(Positive Definite Matrices)

    title: [线性代数]6-5:正定矩阵(Positive Definite Matrices) categories: Mathematic Linear Algebra keywords: Po ...

  6. 线性代数 | Linear Algebra

    网上说<线性代数应该这样学>非常不错,再配合大学教材,把线性代数的基本知识点过一遍. 线性代数 - 知乎 最近在跟一个教程:李宏毅的线性代数 基本知识: Rn :We denote the ...

  7. 应用线性代数简介 - 向量,矩阵和最小二乘法 By Stephen Boyd and Lieven Vandenberghe

    Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares 应用线性代数简介 - 向量,矩阵和最小二乘法 ...

  8. [线性代数] 线性子空间入門 Basic Vector Subspaces

    导语:其他集数可在[线性代数]标籤文章找到.线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流. Overview: Subspace definition ...

  9. [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization

    Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...

随机推荐

  1. Luogu5284 十二省联考2019字符串问题(后缀树+拓扑排序)

    对反串建SAM弄出后缀树,每个b串通过倍增定位其在后缀树上对应的节点,根据其长度将节点拆开.然后每个a串也找到对应的节点,由该节点向表示a串的节点连边,再把所给的边连上跑拓扑排序即可. #includ ...

  2. Struts标签<s:if>判断字符串是否包含一个固定的值

    Struts标签<s:if>判断字符串是否包含一个固定的值:1.如果比较对象是字符串: <s:if test="str.contains('判断是否包含的字符串')&quo ...

  3. php定界符介绍

    php界定符就是为了照样输出内容.它的格式如下: <<<EOF ...... EOF; 其中EOF是自定义的变量,但要成对出现! 首先附上一段php代码: <?php $a = ...

  4. 手把手教你如何用java8新特性将List中按指定属性排序,过滤重复数据

    在java中常常会遇到这样一个问题,在实际应用中,总会碰到对List排序并过滤重复的问题,如果List中放的只是简单的String类型过滤so easy,但是实际应用中并不会这么easy,往往List ...

  5. perl语言的线程使用

    参考的教程链接是 https://www.cnblogs.com/migrantworkers/p/6973459.html 1.Perl 多线程的使用,join 和 detach 的区别 ,join ...

  6. MyBatis核心配置文件详析mybatis-cfg.xml

    <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE configuration PUBLIC & ...

  7. C#面向对象 什么是面向对象

    1.面向对象(Object Oriented,OO) 是当前计算机界关心的重点,它是90年代软件开发方法的主流.面向对象的概念和应用已超越了程序设计和软件开发,扩展到很宽的范围.如数据库系统.交互式界 ...

  8. javascript实现Html Table数据表分页

    直接调用: <style type="text/css">           th         {             font-size:18px;     ...

  9. Android 启动流程分析

    原文:https://www.jianshu.com/p/a5532ecc8377 作者曾经在高通的Android性能组工作,主要工作是优化Android Application的启动时间. APP基 ...

  10. Go语言—— Array,Slice,Map 和 Set

    转自:https://se77en.cc/ Array(数组) 内部机制 在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可以是结构类型 ...