UVA 11754 Code Feat 中国剩余定理+枚举
Code FeatUVA - 11754
题意:给出c个彼此互质的xi,对于每个xi,给出ki个yj,问前s个ans满足ans%xi的结果在yj中有出现过。
一看便是个中国剩余定理,但是同余方程组就有ki的乘积种组合,而ki的乘积最大是1e18,直接中国剩余定理肯定不是的,只能对ki的乘积稍微小的时候才能使用。
而当ki的乘积很大时,便说明对于每个xi它的yj都很多,那么我们挑选其中一组xi,设ans=temp*xi+yj,temp不需要枚举到很大便能满足其他的%xi=yj,
至于那组xi的选择,因为我们是要枚举得更快,所有便是yj尽可能的多,xi尽可能的大,也就是ki/xi最小。
最后注意输出格式上,空行的输出。
#include<cstdio>
#include<set>
using namespace std;
typedef long long ll;
const int N=;
int n,m;
ll bb[N],cc[N],cp;
set<ll> ss[N];
ll exgcd(ll a,ll b, ll &x,ll &y){
if(!b){
x=;
y=;
return a;
}
ll g=exgcd(b,a%b,y,x);
y-=a/b*x;
return g;
}
ll inv(ll a,ll c){
ll g,x,y;
g=exgcd(a,c,x,y);
return g== ? (x%c+c)%c : -;
}
ll crt(){
ll ans=,temp;
for(int i=;i<n;i++){
temp=cp/cc[i];
ans+=bb[i]*temp*inv(temp,cc[i]);
if(ans>=cp) ans%=cp;
}
ans=(ans+cp)%cp;
if(!ans) ans+=cp;
return ans;
}
void dfs(int x){
if(x==n){
ss[n].insert(crt());
return ;
}
for(set<ll>::iterator it=ss[x].begin();it!=ss[x].end();it++){
bb[x]=*it;
dfs(x+);
}
}
void solve1(){
cp=;
for(int i=;i<n;i++) cp*=cc[i];
ss[n].clear();
dfs();
ll temp=,ans;
while(m){
for(set<ll>::iterator it=ss[n].begin();it!=ss[n].end();it++){
ans=(*it)+temp*cp;
printf("%lld\n",ans);
m--;
if(!m) break;
}
temp++;
}
}
void solve2(int p){
ll temp=,ans;
while(m){
for(set<ll>::iterator it=ss[p].begin();it!=ss[p].end();it++){
ans=temp*cc[p]+(*it);
if(!ans) continue;
bool flag=true;
for(int i=;i<n;i++){
if(i==p) continue;
if(ss[i].find(ans%cc[i])==ss[i].end()){
flag=false;
break;
}
}
if(flag){
printf("%lld\n",ans);
m--;
}
if(!m) break;
}
temp++;
}
}
int main(){
int k,p;
ll ji,x;
int t=;
while(~scanf("%d%d",&n,&m)){
if(t) printf("\n");
t=;
p=-;ji=;
for(int i=;i<n;i++){
ss[i].clear();
scanf("%lld",&cc[i]);
scanf("%d",&k);
ji*=k;
if(p==-||k*cc[p]<(int)ss[p].size()*cc[i]) p=i;
while(k--){
scanf("%lld",&x);
ss[i].insert(x);
}
}
if(ji<=) solve1();
else solve2(p);
}
return ;
}
巧妙的分类解决
UVA 11754 Code Feat 中国剩余定理+枚举的更多相关文章
- UVA 11754 Code Feat 中国剩余定理+暴力
lrj白书例题,真好 #include <stdio.h> #include <iostream> #include <vector> #include <m ...
- UVA 11754 - Code Feat(数论)
UVA 11754 - Code Feat 题目链接 题意:给定一个c个x, y1,y2,y3..yk形式,前s小的答案满足s % x在集合y1, y2, y3 ... yk中 思路:LRJ大白例题, ...
- UVA 11754 Code Feat (枚举,中国剩余定理)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud C Code Feat The government hackers at C ...
- uva 11754 Code Feat (中国剩余定理)
UVA 11754 一道中国剩余定理加上搜索的题目.分两种情况来考虑,当组合总数比较大的时候,就选择枚举的方式,组合总数的时候比较小时就选择搜索然后用中国剩余定理求出得数. 代码如下: #includ ...
- Uva 11754 Code Feat
题意概述: 有一个正整数$N$满足$C$个条件,每个条件都形如“它除以$X$的余数在集合$\{Y_1, Y_2, ..., Y_k\}$中”,所有条件中的$X$两两互质, 你的任务是找出最小的S个解. ...
- UVA - 11754 Code Feat (分块+中国剩余定理)
对于一个正整数N,给出C组限制条件,每组限制条件为N%X[i]∈{Y1,Y2,Y3,...,Yk[i]},求满足条件的前S小的N. 这道题很容易想到用中国剩余定理,然后用求第k小集合的方法输出答案.但 ...
- UVa 11754 (中国剩余定理 枚举) Code Feat
如果直接枚举的话,枚举量为k1 * k2 *...* kc 根据枚举量的不同,有两种解法. 枚举量不是太大的话,比如不超过1e4,可以枚举每个集合中的余数Yi,然后用中国剩余定理求解.解的个数不够S个 ...
- UVA 11754 (暴力+中国剩余定理)
题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...
- UVA11754 - Code Feat
Hooray! Agent Bauer has shot the terrorists, blown upthe bad guy base, saved the hostages, exposed ...
随机推荐
- Oracle VIP说明
本篇文档,描述说明VIP的作用 1.VIP全称 virtual ip 虚拟IP 2.Oracle为啥要搞个VIP 3.两节点RAC,集群单个节点故障关闭后,VIP漂移否继续对外提供服务 一.模拟RAC ...
- Spring基础篇——DI/IOC和AOP原理初识
DI(Dependency Injection),依赖注入,和我们常听说的另一个概念 IOC(控制反转)其实归根结底实现的功能是相同的,只是同样的功能站在不同的角度来阐述罢了.这里博主就不去过多的辨析 ...
- 在docker下SQL Server attach mdf和ldf文件
(DB:MyPost) USE masterGO-- Create database via attachCREATE DATABASE [MyPost] ON ( FILENAME = N'C ...
- 前端开发 Vue -0前言
Vue2.0 新手完全填坑攻略——从环境搭建到发布 Vue2 入门,读这篇就够了 Jinkey原创感谢 showonne.yubang 技术指导Demo 地址:http://demo.jinkey.i ...
- XML-RPC-2RPC
远程过程调用协议 RPC一般指远程过程调用协议 RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协 ...
- map自定义键值类型
map自定义键值类型 改变Map的默认比较方式 https://www.cnblogs.com/zjfdlut/archive/2011/08/12/2135698.html 大家知道,STL中的ma ...
- 华为Python面试题
最近在网上偶然看到此题: 有两个序列a,b,大小都为n,序列元素的值任意整形数,无序: 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小 经过一番思索,我试着用穷举法 ...
- 运行 jar 的问题
lib stwe.jar 同目录
- Xcode8 1 创建coreData的ManagedObject后,报错 linker command failed with exit code 1
Xcode8 1 创建coreData的ManagedObject后,报错 使用Xcode 8.1 创建coreData的ManagedObject后,报错. duplicate symbol OBJ ...
- linux centos安装nginx1.7.4
原文转自 jerryhe326:https://www.cnblogs.com/jerrypro/p/7062101.html一.安装准备 首先由于nginx的一些模块依赖一些lib库,所以在安装ng ...