UVA 11754 Code Feat 中国剩余定理+枚举
Code FeatUVA - 11754
题意:给出c个彼此互质的xi,对于每个xi,给出ki个yj,问前s个ans满足ans%xi的结果在yj中有出现过。
一看便是个中国剩余定理,但是同余方程组就有ki的乘积种组合,而ki的乘积最大是1e18,直接中国剩余定理肯定不是的,只能对ki的乘积稍微小的时候才能使用。
而当ki的乘积很大时,便说明对于每个xi它的yj都很多,那么我们挑选其中一组xi,设ans=temp*xi+yj,temp不需要枚举到很大便能满足其他的%xi=yj,
至于那组xi的选择,因为我们是要枚举得更快,所有便是yj尽可能的多,xi尽可能的大,也就是ki/xi最小。
最后注意输出格式上,空行的输出。
#include<cstdio>
#include<set>
using namespace std;
typedef long long ll;
const int N=;
int n,m;
ll bb[N],cc[N],cp;
set<ll> ss[N];
ll exgcd(ll a,ll b, ll &x,ll &y){
if(!b){
x=;
y=;
return a;
}
ll g=exgcd(b,a%b,y,x);
y-=a/b*x;
return g;
}
ll inv(ll a,ll c){
ll g,x,y;
g=exgcd(a,c,x,y);
return g== ? (x%c+c)%c : -;
}
ll crt(){
ll ans=,temp;
for(int i=;i<n;i++){
temp=cp/cc[i];
ans+=bb[i]*temp*inv(temp,cc[i]);
if(ans>=cp) ans%=cp;
}
ans=(ans+cp)%cp;
if(!ans) ans+=cp;
return ans;
}
void dfs(int x){
if(x==n){
ss[n].insert(crt());
return ;
}
for(set<ll>::iterator it=ss[x].begin();it!=ss[x].end();it++){
bb[x]=*it;
dfs(x+);
}
}
void solve1(){
cp=;
for(int i=;i<n;i++) cp*=cc[i];
ss[n].clear();
dfs();
ll temp=,ans;
while(m){
for(set<ll>::iterator it=ss[n].begin();it!=ss[n].end();it++){
ans=(*it)+temp*cp;
printf("%lld\n",ans);
m--;
if(!m) break;
}
temp++;
}
}
void solve2(int p){
ll temp=,ans;
while(m){
for(set<ll>::iterator it=ss[p].begin();it!=ss[p].end();it++){
ans=temp*cc[p]+(*it);
if(!ans) continue;
bool flag=true;
for(int i=;i<n;i++){
if(i==p) continue;
if(ss[i].find(ans%cc[i])==ss[i].end()){
flag=false;
break;
}
}
if(flag){
printf("%lld\n",ans);
m--;
}
if(!m) break;
}
temp++;
}
}
int main(){
int k,p;
ll ji,x;
int t=;
while(~scanf("%d%d",&n,&m)){
if(t) printf("\n");
t=;
p=-;ji=;
for(int i=;i<n;i++){
ss[i].clear();
scanf("%lld",&cc[i]);
scanf("%d",&k);
ji*=k;
if(p==-||k*cc[p]<(int)ss[p].size()*cc[i]) p=i;
while(k--){
scanf("%lld",&x);
ss[i].insert(x);
}
}
if(ji<=) solve1();
else solve2(p);
}
return ;
}
巧妙的分类解决
UVA 11754 Code Feat 中国剩余定理+枚举的更多相关文章
- UVA 11754 Code Feat 中国剩余定理+暴力
lrj白书例题,真好 #include <stdio.h> #include <iostream> #include <vector> #include <m ...
- UVA 11754 - Code Feat(数论)
UVA 11754 - Code Feat 题目链接 题意:给定一个c个x, y1,y2,y3..yk形式,前s小的答案满足s % x在集合y1, y2, y3 ... yk中 思路:LRJ大白例题, ...
- UVA 11754 Code Feat (枚举,中国剩余定理)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud C Code Feat The government hackers at C ...
- uva 11754 Code Feat (中国剩余定理)
UVA 11754 一道中国剩余定理加上搜索的题目.分两种情况来考虑,当组合总数比较大的时候,就选择枚举的方式,组合总数的时候比较小时就选择搜索然后用中国剩余定理求出得数. 代码如下: #includ ...
- Uva 11754 Code Feat
题意概述: 有一个正整数$N$满足$C$个条件,每个条件都形如“它除以$X$的余数在集合$\{Y_1, Y_2, ..., Y_k\}$中”,所有条件中的$X$两两互质, 你的任务是找出最小的S个解. ...
- UVA - 11754 Code Feat (分块+中国剩余定理)
对于一个正整数N,给出C组限制条件,每组限制条件为N%X[i]∈{Y1,Y2,Y3,...,Yk[i]},求满足条件的前S小的N. 这道题很容易想到用中国剩余定理,然后用求第k小集合的方法输出答案.但 ...
- UVa 11754 (中国剩余定理 枚举) Code Feat
如果直接枚举的话,枚举量为k1 * k2 *...* kc 根据枚举量的不同,有两种解法. 枚举量不是太大的话,比如不超过1e4,可以枚举每个集合中的余数Yi,然后用中国剩余定理求解.解的个数不够S个 ...
- UVA 11754 (暴力+中国剩余定理)
题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...
- UVA11754 - Code Feat
Hooray! Agent Bauer has shot the terrorists, blown upthe bad guy base, saved the hostages, exposed ...
随机推荐
- SAS学习笔记26 方差分析
对于多于两组(k>2)样本均数的比较,t检验不再适用,方差分析(analysis of variance, ANOVA)则是解决上述问题的重要分析方法.方差分析由R.A.Fisher(1923) ...
- Luogu4081 USACO17DEC Standing Out from the Herd(广义后缀自动机)
建出广义SAM,通过parent树对每个节点求出其是否仅被一个子串包含及被哪个包含. 写了无数个sam板子题一点意思都没啊 #include<bits/stdc++.h> using na ...
- CentOS7.5 安装MySql教程
CentOS7位安装MySql教程 1.先检查系统是否装有mysql rpm -qa | grep mysql 2.下载mysql的repo源 wget http://repo.mysql.com/m ...
- Manacher算法+注释
Manacher算法是用来求一个字符串中最长回文串的算法. 考虑暴力求最长回文串的做法: 暴力枚举字符串中的所有字串判断是否回文,然后求最大值. 时间复杂度O(n^3),考虑优化. 我们从枚举所有字串 ...
- SQL Server系统函数:字符串函数
原文:SQL Server系统函数:字符串函数 1.字符转化为ASCII,把ASCII转化为字符,注意返回的值是十进制数 select ASCII('A'),ASCII('B'),ASCII('a') ...
- C#通过重载构造函数传递参数、实现两个窗体下的方法的互相调用
直接切入主题 有时候同一个项目下我们可能会使用多个窗体,窗体间方法互相调用也不可避免,好了,使用无参无返回值的方法,开始上图 1.新建一个winform项目Form1,并再添加一个窗体Form2:拖入 ...
- mini.DataGrid使用说明
mini.DataGrid表格.实现分页加载.自定义列.单元格渲染.行编辑器.锁定列.过滤行.汇总行等功能.Extend mini.PanelUsage <div id="dat ...
- react请求接口数据是在componentDidMount 还是componentWillMount周期好
如果你要获取外部数据并加载到组件上,只能在组件"已经"挂载到真实的网页上才能作这事情,其它情况你是加载不到组件的.componentDidMount方法中的代码,是在组件已经完全挂 ...
- flutter packages get 慢 解决方案
国内使用 flutter packages get 命令,一直是 This is taking an unexpectedly long time 状态 科.学.上.网.无.效. windows解决 ...
- spring data 入门
提出问题 我是Sping Data,是程序员的春天,因为我提供很多接口给开发人员, 减少程序员重复的写CRUD和分页等方法,你们也可以叫我春D,或者春帝,因为我很酷 解决问题 在Spring Data ...