P2015 二叉苹果树

  题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树)

  思路:一开始就很直接的想到树形dp上了,因为就是每个树枝要与不要的问题,但要找到如何找到一个转移方程呢,首先我们想一下,最后保留的是一棵树,所以肯定是从根节点开始,然后在它的两个子节点中向下延伸不停的选择保留树枝,换句话说,假如需要保留q根树枝,我们已经知道了根节点的两个子节点保留任意根数的最多苹果数,那么根节点要保留q根树枝的状态,就是遍历一下其中一个根节点保留i根树枝,然后另一个根节点保留q-i根树枝,不停更新答案,转换成转移方程便是:

dp[u][q]=max(dp[u][q],dp[v1][i]+dp[v2][q-i]) (dp[i][j]就代表i节点保留j根树枝的最大苹果数)

  不过需要考虑到的是,根节点没有入度,但其他节点有入度,以及当前节点在它的子树的树枝数,也就是:

dp[u][q]=max(dp[u][q],dp[v1][i]+dp[v2][q-i-g]+c) (g就是它的入度,根节点是0,其他都是1,而c就是父节点和它连接的那根树枝的苹果数)

 #include<cstdio>
#include<cstring>
const int N=;
struct Side{
int to,ne,val;
}S[*N];//前向星存边
int sn,head[N],dp[N][N]={};
int max(int a,int b){
return a>b ? a : b;
}
void add(int u,int v,int c)
{
S[sn].to=v;
S[sn].val=c;
S[sn].ne=head[u];
head[u]=sn++;
}
int treed(int u,int f,int c,int g)//当前节点,父节点,父节点与它相连树枝上的苹果数
{
int v[]={},du[]={},s=;//分别保留两个编号以及总树枝数
for(int i=head[u];i!=-;i=S[i].ne)
{
if(S[i].to!=f)
{
v[s]=S[i].to;
du[s]=treed(v[s],u,S[i].val,);
s++;
}
}
for(int i=;i<=du[]+du[]+g;i++)//du[0]+du[1]+g就是这个节点为根节点最多能保留的树枝数
{
for(int j=max(,i-du[]-g);j<=du[]&&j<=i-g;j++)
dp[u][i]=max(dp[u][i],dp[v[]][j]+dp[v[]][i-j-g]+c);
}
return du[]+du[]+g;
}
int main()
{
int n,q,u,v,c;
memset(head,-,sizeof(head));
scanf("%d%d",&n,&q);
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);//没有严格给出方向,建双向边
add(v,u,c);
}
treed(,,,);
printf("%d\n",dp[][q]);
return ;
}

代码千万条,自觉第一条,复制粘贴爽,打铁泪两行

P2015 二叉苹果树,树形dp的更多相关文章

  1. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  2. 【P2015】二叉苹果树 (树形DP分组背包)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...

  3. P2015 二叉苹果树 (树形动规)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  4. 二叉苹果树——树形Dp(由根到左右子树的转移)

    题意:给出一个二叉树,每条边上有一定的边权,并且剪掉一些树枝,求留下 Q 条树枝的最大边权和. ( 节点数 n ≤100,留下的枝条树 Q ≤ n ,所有边权和 ∑w[i] ≤30000 ) 细节:对 ...

  5. 【Luogu】P2015二叉苹果树(DP,DFS)

    题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...

  6. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  7. P2015 二叉苹果树

    P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...

  8. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  9. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

随机推荐

  1. java lesson14Homework

    /** * 1. 本程序找出字符串数组 String[] arr = {“welcome”, “china”, “hi”, “congratulation”, “great”} 中的长度最大的元素,并 ...

  2. MySQL学习笔记:count(1)、count(*)、count(字段)的区别

    关于数据库中行数统计,无论是MySQL还是Oracle,都有一个函数可以使用,那就是COUNT. 但是,就是这个常用的COUNT函数,却暗藏着很多玄机,尤其是在面试的时候,一不小心就会被虐.不信的话请 ...

  3. HTML之美化盒子

    1.    美化盒子 1.1.          美化文本 1.1.1.  字体大小[font-size]: 字符框的高度,可继承,默认值medium,16px.基准字号:浏览器设置的默认字体大小,通 ...

  4. 几种常用的java 实现反转的方法———reverse

    1.最简单的方法 public static String reverse1(String str) return new StringBuffer(str).reverse().toString() ...

  5. Fescar锁和隔离级别的理解

    前几天夜里,我老大发我一篇文章说阿里的GTS开源了. 因为一直对分布式事务比较感兴趣,立马pull了代码,进行阅读.基本的原理,实现方案我就不一一细化了,详细见官方文档(写的很棒,点赞). 在fesc ...

  6. List<int>转化为逗号链接的字符串

    /// <summary> /// List<int>转化为逗号链接的字符串 /// </summary> /// <param name="lis ...

  7. Java学习笔记【四、类、对象、接口】

    编程语言的发展 机器语言 过程语言 面向对象编程--封装.继承.多态 关键字 extends implements override overload super this static abstra ...

  8. Python3简易接口自动化测试框架设计与实现(上)

    目录 1.开发环境 2.用到的模块 3.框架设计 3.1.流程 3.2.项目结构 5.日志打印 6.接口请求类封装 接口开发请参考:使用Django开发简单接口:文章增删改查 1.开发环境 操作系统: ...

  9. Samba set of user authentication and file access rights

    This series is compatible with Linux certification exam LPIC. A typical Linux user-level topics omit ...

  10. 【转】__cplusplus的含义

    有点代码中会看到以下形式的代码: #ifdef __cplusplus extern "C" {#endif #ifdef __cplusplus}#endif 这些代码是什么意思 ...