题目描述

X^A mod P = B,其中P为质数。给出P和A B,求< P的所有X。

例如:P = 11,A = 3,B = 5。

3^3 Mod 11 = 5

所有数据中,解的数量不超过Sqrt(P)。

分析

这道题包括几个知识点

离散对数(大步小步BSGS算法)

求关于x的同余方程\(y^x \equiv n \pmod{P}(P为质数)\)的解,

设\(m=\lceil \sqrt{n} \rceil,x=bm+r\),我们预处理出\(y^i(i\in[0,P-1])\),用map或hash储存起来

我们从小到大枚举b,就可以根据\(y^{(b+1)m} \cdot n^{-1} \equiv y^{m-r}\pmod{P}\),在有序表中找到\(y^{m-r}\)来的到指数r

N次剩余

求关于x的同余方程\(x^y \equiv n \pmod{P}(P为质数)\)的解

设P的原根为g,因为\(\varphi(P)=P-1\),根据原根的性质\(\{1,2,3...P-1\}\)一一与\(\{g^1,g^2,g^3...g^{P-1}\}\)对应

令\(x=g^s,n=g^t\)

通过BSGS,我们可以求出t,

于是\(s \cdot y \equiv t \pmod{P-1}\),用扩展欧几里得解方程。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
#include <vector>
const int inf=2147483647;
const int mo=1e6+7;
const int N=100005;
using namespace std;
struct arr{
long long x,id;
bool operator<(const arr &b)const{
if (x == b.x) return id < b.id;
return x<b.x;
}
}E[100500];
int T;
long long sol[N],P,A,B,G,m,num,ans[N],d[N];
long long ksm(long long x,long long y)
{
long long s=1;
for(;y;y>>=1,x=x*x%P)
if(y&1) s=s*x%P;
return s;
}
bool check(int G)
{
int tmp=P-1;
for(int i=2;i*i<=tmp;i++)
{
if(tmp%i) continue;
if(ksm(G,i)==1 || ksm(G,tmp/i)==1) return false;
}
return true;
}
void pre()
{
for(G=2;!check(G);G++);
m=ceil(sqrt(P));
long long v=1;
for(int i=0;i<=m;i++)
{
arr tmp;
tmp.x=v,tmp.id=i;
E[i]=tmp;
v=v*G%P;
}
sort(E,E+m);
}
long long BSGS(long long y)
{
long long ny=ksm(y,P-2),sum=1,s=ksm(G,m);
for(int i=0;i<m;i++)
{
long long val=(sum=sum*s%P)*ny%P;
arr tmp;
tmp.x=val,tmp.id=-1;
long long pos=lower_bound(E,E+m+1,tmp)-E;
if(E[pos].x==val) return i*m+m-E[pos].id;
}
return 0;
}
int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=1,y=0;
return a;
}
long long r=exgcd(b,a%b,y,x);
y-=x*(a/b);
return r;
}
void residue(long long a,long long b,long long m)
{
int x=0,y=0,d=exgcd(a,m,x,y);
if(b%d) return;
num=d;
sol[0]=x*(b/d)%m;
for(int i=1;i<d;i++) sol[i]=(sol[i-1]+m/d)%m;
for(int i=0;i<d;i++) sol[i]=(sol[i]+m)%m;
}
void solve()
{
pre();
num=0,residue(A,BSGS(B),P-1);
if(!num) printf("No Solution\n");
else
{
for(int i=0;i<num;i++) ans[i]=ksm(G,sol[i]);
sort(ans,ans+num);
for(int i=0;i<num;i++) printf("%lld ",ans[i]);
putchar('\n');
}
}
int main()
{
for(scanf("%d",&T);T--;)
{
scanf("%lld%lld%lld",&P,&A,&B);
solve();
}
}

【51nod 1038】X^A Mod P的更多相关文章

  1. 【51Nod 1769】Clarke and math2

    [51Nod 1769]Clarke and math2 题面 51Nod 题解 对于一个数论函数\(f\),\(\sum_{d|n}f(d)=(f\times 1)(n)\). 其实题目就是要求\( ...

  2. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  3. 【BZOJ 1038】[ZJOI2008]瞭望塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1038 [题意] [题解] 可以看到所有村子的瞭望塔所在的位置只会是在相邻两个村子所代表 ...

  4. 【BZOJ 1038】 1038: [ZJOI2008]瞭望塔

    1038: [ZJOI2008]瞭望塔 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 ...

  5. 51NOD 1038:X^A Mod P——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1038 X^A mod P = B,其中P为质数.给出P和A B,求< ...

  6. 【51nod 1251】 Fox序列的数量(以及带限制插板法讲解)

    为什么网上没有篇详细的题解[雾 可能各位聚聚觉得这道题太简单了吧 /kk 题意 首先题目是求满足条件的序列个数,条件为:出现次数最多的数仅有一个 分析 感谢 刚睡醒的 JZ姐姐在咱写题解忽然陷入自闭的 ...

  7. 【51nod 1355】 斐波那契数的最小公倍数

    题目 51nod的数学题都还不错啊 首先直接算显然是没有办法算的,因为\(fib\)的lcm这个东西还是太鬼畜了 我们考虑到\(fib\)数列的一个非常好的性质是\(gcd(fib_i,fib_{j} ...

  8. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  9. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

随机推荐

  1. Codeforces Round #586 (Div. 1 + Div. 2) D.Alex and Julian 简单证明

    题意:在序列中删除最少元素使得得到的图是二分图. 其中点是整数域的点. 比如b1=2   那么a可以连b当且仅当|a-b|=2 同时这里的a,b是任意整数. 怎样判定一个序列是否合法呢?于是想到了二分 ...

  2. 虚拟机(Vmware)安装ubuntu18.04和配置调整(一)

    一.虚拟机(Vmware)安装ubuntu18.04 1.下载ubuntu18.04桌面版镜像文件< ubuntu-18.04.3-desktop-amd64.iso> 2.使用VMwar ...

  3. 异或运算符(^)、与运算符(&)、或运算符(|)、反运算符(~)、右移运算符(>>)、无符号右移运算符(>>>)

    目录 异或(^).异或和 的性质及应用总结 异或的含义 异或的性质:满足交换律和结合律 异或的应用 按位 与运算符(&) 按位 或运算符(|) 取 反运算符(~) 右移运算符(>> ...

  4. leecode 刷题(32)-- 链表的中间节点

    leecode 刷题(32)-- 链表的中间节点 描述: 给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3, ...

  5. c语言中gets()的详细用法

    gets从标准输入设备读字符串函数.可以无限读取,不会判断上限,以回车结束读取,所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出. 从stdin流中读取字符串,直至接受到换行符 ...

  6. 对接外网post,get接口封装类库

    public class HttpHelper { public static string GetAsync(string url)  { HttpWebRequest request = WebR ...

  7. 佳能单反SDK 步骤

    EdsInitializeSDK(); EdsGetCameraList(&eclr);//获取相机列表 EdsGetChildCount(eclr, &camCount);  //获 ...

  8. python检测域名

    pip install python-whois import whois print(whois.whois('baidu.com')) #输出有关baidu.com的所有域名

  9. HTML5中新增加的结构元素、网页元素和全局属性

    HTML5新增的结构元素(新增的都是块元素,独占一行) 1) header 定义了文档的头部区域 <header> <h1>网站标题<h1> </header ...

  10. vue-路由动态切换title

    router.js { path: '/nav', component: () => import('../view/nav.vue'), meta:{ title:'nav', } }, { ...