C. Vasily the Bear and Sequence

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasily the bear has got a sequence of positive integers a1, a2, ..., a**n. Vasily the Bear wants to write out several numbers on a piece of paper so that the beauty of the numbers he wrote out was maximum.

The beauty of the written out numbers b1, b2, ..., b**k is such maximum non-negative integer v, that number b1 and b2 and ... and b**k is divisible by number 2v without a remainder. If such number v doesn't exist (that is, for any non-negative integer v, number b1 and b2 and ... and b**k is divisible by 2v without a remainder), the beauty of the written out numbers equals -1.

Tell the bear which numbers he should write out so that the beauty of the written out numbers is maximum. If there are multiple ways to write out the numbers, you need to choose the one where the bear writes out as many numbers as possible.

Here expression x and y means applying the bitwise AND operation to numbers x and y. In programming languages C++ and Java this operation is represented by "&", in Pascal — by "and".

Input

The first line contains integer n (1 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., a**n (1 ≤ a1 < a2 < ... < a**n ≤ 109).

Output

In the first line print a single integer k (k > 0), showing how many numbers to write out. In the second line print k integers b1, b2, ..., b**k — the numbers to write out. You are allowed to print numbers b1, b2, ..., b**k in any order, but all of them must be distinct. If there are multiple ways to write out the numbers, choose the one with the maximum number of numbers to write out. If there still are multiple ways, you are allowed to print any of them.

Examples

input

Copy

51 2 3 4 5

output

Copy

24 5

input

Copy

31 2 4

output

Copy

14

题意:

给你一个含有n个数的数组a

让你找到一个数组a的子集,满足:子集中的每一个数相与得到的结果x,满足一个最大的k,\(x\) 对$2^k $ 取模为0.

在满足k最大的前提下,子集的集合大小最大。

思路:

枚举k从30 到0 ,2^K 即 为 \(2^{30},2^{29},2^{28} ... 2^{0}\)

对于每一个k,我们让数组a中所有第k位为1的数都相与起来,判断相与后的数值x的lowbit(x)是否为2…^k。

如果x的lowbit(x) 为k,就代表x对 2^k 取模为0,如何题意,且k是满足题意最大的,

集合就为数组a中所有第k位为1的数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
std::vector<int> v[50];
std::vector<int> ans2;
int lowbit(int x)
{
return -x & x;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
int num = 0;
repd(i, 1, n)
{
cin >> a[i];
}
for (int j = 30; j >= 0; j--)
{
int num = (1 << j);
int x = -1;
repd(i, 1, n)
{
if (num & (a[i]))
{
if (x == -1)
{
x = a[i];
} else
{
x &= a[i];
}
ans2.push_back(a[i]);
}
}
if (lowbit(x) == num)
{
break;
} else
{
ans2.clear();
}
}
cout << sz(ans2) << endl;
Pv(ans2); return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

C. Vasily the Bear and Sequence Codeforces 336C(枚举,思维)的更多相关文章

  1. codeforces 336C Vasily the Bear and Sequence(贪心)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Sequence Vasily the b ...

  2. codeforces C. Vasily the Bear and Sequence 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/C 题目意思:给出一个递增的正整数序列 a1, a2, ..., an,要求从中选出一堆数b1, b ...

  3. codeforces 336D Vasily the Bear and Beautiful Strings(组合数学)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Beautiful Strings Vas ...

  4. Increasing Sequence CodeForces - 11A

    Increasing Sequence CodeForces - 11A 很简单的贪心.由于不能减少元素,只能增加,过程只能是从左到右一个个看过去,看到一个小于等于左边的数的数就把它加到比左边大,并记 ...

  5. Almost Regular Bracket Sequence CodeForces - 1095E (线段树,单点更新,区间查询维护括号序列)

    Almost Regular Bracket Sequence CodeForces - 1095E You are given a bracket sequence ss consisting of ...

  6. codeforces A. Vasily the Bear and Triangle 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/A 好简单的一条数学题,是8月9日的.比赛中没有做出来,今天看,从pupil变成Newbie了,那个 ...

  7. Codeforces Round #195 (Div. 2) A. Vasily the Bear and Triangle

    水题,注意数据范围即可 #include <iostream> #include <algorithm> #include <utility> using name ...

  8. Codeforces Round #195 (Div. 2) D题Vasily the Bear and Beautiful Strings

    这场CF,脑子乱死啊...C题,搞了很长时间,结束了,才想到怎么做.B题,没看,D题,今天看了一下,很不错的组合题. 如果n和m都挺多的时候 以下情况都是变为1,根据偶数个0,最后将会为1,奇数个0, ...

  9. codeforces 336D. Vasily the Bear and Beautiful Strings 组合数学 dp

    题意: 给出n,m,g,求好串的个数 0 <= n,m <= 10^5,n + m >= 1,0 <= g <= 1 好串的定义: 1.只由0,1组成,并且恰好有n个0, ...

随机推荐

  1. 如何做一个项目v2.ppt

    链接:https://pan.baidu.com/s/159GQsYK9BcQad3h1CyVUYg 提取码:ivcj 复制这段内容后打开百度网盘手机App,操作更方便哦

  2. 【FFMPEG】【ARM-Linux开发】 ffmpeg 静态库使用,undefined reference错误

    原文:http://blog.csdn.net/chinazjn/article/details/7954984 ffmpeg移植到dm365上,遇到undefined reference错误: GA ...

  3. 【FFMPEG】【ARM-Linux开发】fmpeg安装第三方编码器(encoder)库,ffmpeg编码h264(完)

    fmpeg安装第三方编码器(encoder)库,ffmpeg编码h264(完) ffmpeg安装第三方编码器(encoder)库 关键词:ffmpeg.编码h264.第三方encoder 安装好了ff ...

  4. HIVE外部表 分区表

    HIVE外部表 分区表    外部表        创建hive表,经过检查发现TBLS表中,hive表的类型为MANAGED_TABLE. 在真实开发中,很可能在hdfs中已经有了数据,希望通过hi ...

  5. kafka的offset相关知识

    Offset存储模型 由于一个partition只能固定的交给一个消费者组中的一个消费者消费,因此Kafka保存offset时并不直接为每个消费者保存,而是以 groupid-topic-partit ...

  6. Spring mybatis源码篇章-动态SQL节点源码深入

    通过阅读源码对实现机制进行了解有利于陶冶情操,承接前文Spring mybatis源码篇章-动态SQL基础语法以及原理 前话 前文描述到通过mybatis默认的解析驱动类org.apache.ibat ...

  7. error: audit:backlog limit exceeded

    报错场景:telnet.ping.ftp都通的情况下,无法ssh服务器 原因:audit缓冲区设置过小,服务器默认缓冲区大小为320kb 解决办法:可通过auditctl -b 8192设定缓冲区大小 ...

  8. HanLP封装为web services服务的过程介绍

    前几天的召开的2019年大数据生态产业大会不知道大家关注到没有,看到消息是hanlp2.0版本发布了.不知道hanlp2.0版本又将带来哪些新的变化?准备近期看能够拿到一些hanlp2.0的资料,如果 ...

  9. Hanlp-地名识别调试方法详解

    HanLP收词特别是实体比较多,因此特别容易造成误识别.下边举几个地名误识别的例子,需要指出的是,后边的机构名识别也以地名识别为基础,因此,如果地名识别不准确,也会导致机构名识别不准确. 类型1 数字 ...

  10. TCP连接可能出现的异常总结

    1.java.net.BindException:Address already in use:bind 服务端出错,两次对同一个端口进行启动(会在服务端发生报错,抛出异常,不考虑) 2.java.n ...