C. Vasily the Bear and Sequence

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasily the bear has got a sequence of positive integers a1, a2, ..., a**n. Vasily the Bear wants to write out several numbers on a piece of paper so that the beauty of the numbers he wrote out was maximum.

The beauty of the written out numbers b1, b2, ..., b**k is such maximum non-negative integer v, that number b1 and b2 and ... and b**k is divisible by number 2v without a remainder. If such number v doesn't exist (that is, for any non-negative integer v, number b1 and b2 and ... and b**k is divisible by 2v without a remainder), the beauty of the written out numbers equals -1.

Tell the bear which numbers he should write out so that the beauty of the written out numbers is maximum. If there are multiple ways to write out the numbers, you need to choose the one where the bear writes out as many numbers as possible.

Here expression x and y means applying the bitwise AND operation to numbers x and y. In programming languages C++ and Java this operation is represented by "&", in Pascal — by "and".

Input

The first line contains integer n (1 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., a**n (1 ≤ a1 < a2 < ... < a**n ≤ 109).

Output

In the first line print a single integer k (k > 0), showing how many numbers to write out. In the second line print k integers b1, b2, ..., b**k — the numbers to write out. You are allowed to print numbers b1, b2, ..., b**k in any order, but all of them must be distinct. If there are multiple ways to write out the numbers, choose the one with the maximum number of numbers to write out. If there still are multiple ways, you are allowed to print any of them.

Examples

input

Copy

51 2 3 4 5

output

Copy

24 5

input

Copy

31 2 4

output

Copy

14

题意:

给你一个含有n个数的数组a

让你找到一个数组a的子集,满足:子集中的每一个数相与得到的结果x,满足一个最大的k,\(x\) 对$2^k $ 取模为0.

在满足k最大的前提下,子集的集合大小最大。

思路:

枚举k从30 到0 ,2^K 即 为 \(2^{30},2^{29},2^{28} ... 2^{0}\)

对于每一个k,我们让数组a中所有第k位为1的数都相与起来,判断相与后的数值x的lowbit(x)是否为2…^k。

如果x的lowbit(x) 为k,就代表x对 2^k 取模为0,如何题意,且k是满足题意最大的,

集合就为数组a中所有第k位为1的数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
std::vector<int> v[50];
std::vector<int> ans2;
int lowbit(int x)
{
return -x & x;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
int num = 0;
repd(i, 1, n)
{
cin >> a[i];
}
for (int j = 30; j >= 0; j--)
{
int num = (1 << j);
int x = -1;
repd(i, 1, n)
{
if (num & (a[i]))
{
if (x == -1)
{
x = a[i];
} else
{
x &= a[i];
}
ans2.push_back(a[i]);
}
}
if (lowbit(x) == num)
{
break;
} else
{
ans2.clear();
}
}
cout << sz(ans2) << endl;
Pv(ans2); return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

C. Vasily the Bear and Sequence Codeforces 336C(枚举,思维)的更多相关文章

  1. codeforces 336C Vasily the Bear and Sequence(贪心)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Sequence Vasily the b ...

  2. codeforces C. Vasily the Bear and Sequence 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/C 题目意思:给出一个递增的正整数序列 a1, a2, ..., an,要求从中选出一堆数b1, b ...

  3. codeforces 336D Vasily the Bear and Beautiful Strings(组合数学)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Beautiful Strings Vas ...

  4. Increasing Sequence CodeForces - 11A

    Increasing Sequence CodeForces - 11A 很简单的贪心.由于不能减少元素,只能增加,过程只能是从左到右一个个看过去,看到一个小于等于左边的数的数就把它加到比左边大,并记 ...

  5. Almost Regular Bracket Sequence CodeForces - 1095E (线段树,单点更新,区间查询维护括号序列)

    Almost Regular Bracket Sequence CodeForces - 1095E You are given a bracket sequence ss consisting of ...

  6. codeforces A. Vasily the Bear and Triangle 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/A 好简单的一条数学题,是8月9日的.比赛中没有做出来,今天看,从pupil变成Newbie了,那个 ...

  7. Codeforces Round #195 (Div. 2) A. Vasily the Bear and Triangle

    水题,注意数据范围即可 #include <iostream> #include <algorithm> #include <utility> using name ...

  8. Codeforces Round #195 (Div. 2) D题Vasily the Bear and Beautiful Strings

    这场CF,脑子乱死啊...C题,搞了很长时间,结束了,才想到怎么做.B题,没看,D题,今天看了一下,很不错的组合题. 如果n和m都挺多的时候 以下情况都是变为1,根据偶数个0,最后将会为1,奇数个0, ...

  9. codeforces 336D. Vasily the Bear and Beautiful Strings 组合数学 dp

    题意: 给出n,m,g,求好串的个数 0 <= n,m <= 10^5,n + m >= 1,0 <= g <= 1 好串的定义: 1.只由0,1组成,并且恰好有n个0, ...

随机推荐

  1. 【ABAP系列】ABAP CL_ABAP_CONV_IN_CE

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]ABAP CL_ABAP_CON ...

  2. logstash输出至elasticsearch

    续上一篇 上一篇描述了通过logback配置用logstash收集springmvc项目日志,本文是描述如何进一步通过elasticsearch对所收集数据进行的分析. output { elasti ...

  3. Apache服务器安装SSL证书

    Apache服务器安装SSL证书 在证书控制台下载Apache版本证书,下载到本地的是一个压缩文件,解压后里面包含_public.crt文件是证书文件,_chain.crt是证书链(中间证书)文件,. ...

  4. 【VS开发】GDI+ 用CImage类来显示PNG、JPG等图片

    系统环境:Windows 7 软件环境:Visual Studio 2008 SP1 本次目的:实现VC单文档.对话框程序显示图片效果 CImage 是VC.NET中定义的一种MFC/ATL共享类,也 ...

  5. beego项目和go项目 打包部署到linux

    参考文章: https://www.jianshu.com/p/64363dff9721 [beego项目] 一. 打包 1. 打开Terminal 定位到工程的 main.go 文件夹目录 2. 执 ...

  6. DDE 的知识和使用

    在github上下载.net 版本的NDde 开发包 或者在此处下载开发包 MSDN 地址 创建服务器 class BasicDDE:DdeServer { public BasicDDE(strin ...

  7. springboot中配置文件使用2

    本文章接上一篇文章:https://www.cnblogs.com/ysq0908/p/11140931.html 1.使用注解@Value获取配置文件的值 注意:上述中的复杂数据封装指:有map等数 ...

  8. 网络协议及socket

    实体层:就是把电脑连接起来的物理手段.它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号. 链接层: 单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义? 这 ...

  9. 第8章:LeetCode--算法:二叉树的创建、遍历、删除、求高度

    创建> 需要给定一个root的key,所有小于这个key的放到左边,大于key的放到右边, 比如vector<int> tree = {5,2,7,1,9,3,8},最后的树: 5 ...

  10. Python3 中,一行可以书写多个语句,一个语句可以分成多行书写

    Python3 中,一行可以书写多个语句 语句之间用分号隔开即可 print('I love you');print('very much!') Python3 中,一个语句可以分成多行书写 一行过长 ...