C. Vasily the Bear and Sequence

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasily the bear has got a sequence of positive integers a1, a2, ..., a**n. Vasily the Bear wants to write out several numbers on a piece of paper so that the beauty of the numbers he wrote out was maximum.

The beauty of the written out numbers b1, b2, ..., b**k is such maximum non-negative integer v, that number b1 and b2 and ... and b**k is divisible by number 2v without a remainder. If such number v doesn't exist (that is, for any non-negative integer v, number b1 and b2 and ... and b**k is divisible by 2v without a remainder), the beauty of the written out numbers equals -1.

Tell the bear which numbers he should write out so that the beauty of the written out numbers is maximum. If there are multiple ways to write out the numbers, you need to choose the one where the bear writes out as many numbers as possible.

Here expression x and y means applying the bitwise AND operation to numbers x and y. In programming languages C++ and Java this operation is represented by "&", in Pascal — by "and".

Input

The first line contains integer n (1 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., a**n (1 ≤ a1 < a2 < ... < a**n ≤ 109).

Output

In the first line print a single integer k (k > 0), showing how many numbers to write out. In the second line print k integers b1, b2, ..., b**k — the numbers to write out. You are allowed to print numbers b1, b2, ..., b**k in any order, but all of them must be distinct. If there are multiple ways to write out the numbers, choose the one with the maximum number of numbers to write out. If there still are multiple ways, you are allowed to print any of them.

Examples

input

Copy

51 2 3 4 5

output

Copy

24 5

input

Copy

31 2 4

output

Copy

14

题意:

给你一个含有n个数的数组a

让你找到一个数组a的子集,满足:子集中的每一个数相与得到的结果x,满足一个最大的k,\(x\) 对$2^k $ 取模为0.

在满足k最大的前提下,子集的集合大小最大。

思路:

枚举k从30 到0 ,2^K 即 为 \(2^{30},2^{29},2^{28} ... 2^{0}\)

对于每一个k,我们让数组a中所有第k位为1的数都相与起来,判断相与后的数值x的lowbit(x)是否为2…^k。

如果x的lowbit(x) 为k,就代表x对 2^k 取模为0,如何题意,且k是满足题意最大的,

集合就为数组a中所有第k位为1的数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
std::vector<int> v[50];
std::vector<int> ans2;
int lowbit(int x)
{
return -x & x;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
int num = 0;
repd(i, 1, n)
{
cin >> a[i];
}
for (int j = 30; j >= 0; j--)
{
int num = (1 << j);
int x = -1;
repd(i, 1, n)
{
if (num & (a[i]))
{
if (x == -1)
{
x = a[i];
} else
{
x &= a[i];
}
ans2.push_back(a[i]);
}
}
if (lowbit(x) == num)
{
break;
} else
{
ans2.clear();
}
}
cout << sz(ans2) << endl;
Pv(ans2); return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

C. Vasily the Bear and Sequence Codeforces 336C(枚举,思维)的更多相关文章

  1. codeforces 336C Vasily the Bear and Sequence(贪心)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Sequence Vasily the b ...

  2. codeforces C. Vasily the Bear and Sequence 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/C 题目意思:给出一个递增的正整数序列 a1, a2, ..., an,要求从中选出一堆数b1, b ...

  3. codeforces 336D Vasily the Bear and Beautiful Strings(组合数学)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Beautiful Strings Vas ...

  4. Increasing Sequence CodeForces - 11A

    Increasing Sequence CodeForces - 11A 很简单的贪心.由于不能减少元素,只能增加,过程只能是从左到右一个个看过去,看到一个小于等于左边的数的数就把它加到比左边大,并记 ...

  5. Almost Regular Bracket Sequence CodeForces - 1095E (线段树,单点更新,区间查询维护括号序列)

    Almost Regular Bracket Sequence CodeForces - 1095E You are given a bracket sequence ss consisting of ...

  6. codeforces A. Vasily the Bear and Triangle 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/A 好简单的一条数学题,是8月9日的.比赛中没有做出来,今天看,从pupil变成Newbie了,那个 ...

  7. Codeforces Round #195 (Div. 2) A. Vasily the Bear and Triangle

    水题,注意数据范围即可 #include <iostream> #include <algorithm> #include <utility> using name ...

  8. Codeforces Round #195 (Div. 2) D题Vasily the Bear and Beautiful Strings

    这场CF,脑子乱死啊...C题,搞了很长时间,结束了,才想到怎么做.B题,没看,D题,今天看了一下,很不错的组合题. 如果n和m都挺多的时候 以下情况都是变为1,根据偶数个0,最后将会为1,奇数个0, ...

  9. codeforces 336D. Vasily the Bear and Beautiful Strings 组合数学 dp

    题意: 给出n,m,g,求好串的个数 0 <= n,m <= 10^5,n + m >= 1,0 <= g <= 1 好串的定义: 1.只由0,1组成,并且恰好有n个0, ...

随机推荐

  1. 读rfc HTTP 协议

    这是IETF ( 国际互联网工程任务组(The Internet Engineering Task Force,简称 IETF))制定的协议之一. 互联网工程任务组,成立于1985年底,是全球互联网最 ...

  2. 深度优先dfs与广度bfs优先搜索总结+例题

    DFS(Deep First Search)深度优先搜索 深度优先遍历(dfs)是对一个连通图进行遍历的算法.它的思想是从一个顶点开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节 ...

  3. 【VS开发】内存映射文件进程间共享内存

    内存映射文件进程间共享内存 内存映射文件的另一个功能是在进程间共享数据,它提供了不同进程共享内存的一个有效且简单的方法.后面的许多例子都要用到共享内存.共享内存主要是通过映射机制实现的.Windows ...

  4. Vue CLI 3 如何自定义 js 的文件名

    参考链接:https://blog.csdn.net/weixin_33979363/article/details/88742342

  5. du 和 df命令

    测试环境数据库收到磁盘报警时,需要清理部分磁盘空间 df -h 查看整个磁盘占有 找到对应目录 查看每个文件夹占有磁盘量: sudo du -h --max-depth=1 data/ --max-d ...

  6. echarts中国地图描绘

    <!DOCTYPE html><html lang="zh-CN"><head> <meta charset="utf-8&qu ...

  7. Hadoop学习(2)-java客户端操作hdfs及secondarynode作用

    首先要在windows下解压一个windows版本的hadoop 然后在配置他的环境变量,同时要把hadoop的share目录下的hadoop下的相关jar包拷贝到esclipe 然后Build Pa ...

  8. DB2创建EMP和DEPT并进行基础操作

    一.DB2创建EMP和DEPT测试表 --DB2创建测试表 CREATE TABLE TEST.EMP (EMPNO INTEGER NOT NULL, ENAME ), JOB ), MGR INT ...

  9. springboot+JPA 整合redis

    1.导入redis依赖: <dependency> <groupId>org.springframework.boot</groupId> <artifact ...

  10. (五)mybatis开发dao层

    目录 SqlSession 是线程不安全的 原始 dao 开发方法 Mapper 代理方法 关于代理对象 SqlSession 是线程不安全的 SqlSession 是 线程不安全 的: 对于它,我们 ...