pytorch入门

什么是pytorch

PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:

  • NumPy 的替代品,可以利用 GPU 的性能进行计算。
  • 深度学习研究平台拥有足够的灵活性和速度

张量

Tensors 类似于 NumPy 的 ndarrays ,同时 Tensors 可以使用 GPU 进行计算。

张量的构造

构造全零矩阵

1.导入

from __future__ import  print_function
import torch

2.构造一个5x3矩阵,不初始化。

x=torch.empty(5,3)
print(x)

3.输出

tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])

构造随机初始化矩阵

x=torch.rand(5,3)
print(x)

构造指定类型的矩阵

构造一个矩阵全为 0,而且数据类型是 long.

Construct a matrix filled zeros and of dtype long:

from __future__ import  print_function
import torch x = torch.zeros(5, 3, dtype=torch.long)
print(x)

使用数据创建张量

x=torch.tensor([5.5,3])
print(x)
tensor([5.5000, 3.0000])

根据已有的tensor来创建tensor

x=torch.tensor([5.5,3])
print(x)
x=x.new_ones(5,3,dtype=torch.double)
print(x)
# 覆盖类型
x=torch.rand_like(x,dtype=torch.float) # 结果具有相同的大小
print(x) #输出自己的维度
print(x.size())

结果

tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
tensor([[0.6122, 0.4650, 0.7017],
[0.6148, 0.9167, 0.0879],
[0.2891, 0.5855, 0.1947],
[0.3554, 0.2678, 0.5296],
[0.6527, 0.9537, 0.3847]])
torch.Size([5, 3])

张量的操作

张量加法

方式一

y=torch.rand(5,3);
print(x+y)
tensor([[0.7509, 1.1579, 0.1261],
[0.6551, 1.0985, 0.4284],
[1.4595, 0.9757, 1.2582],
[1.0690, 0.7405, 1.7367],
[0.6201, 1.3876, 0.8193]])

方式二

print(torch.add(x,y))
tensor([[0.8122, 1.0697, 0.8380],
[1.4668, 0.2371, 1.0734],
[0.9489, 1.3252, 1.2579],
[0.7728, 1.4361, 1.5713],
[0.7098, 0.9440, 0.4296]])

方式三

print(y.add_(x))

注意

注意 任何使张量会发生变化的操作都有一个前缀 '_'。例如:
x.copy_(y)
,
x.t_()
, 将会改变
x

索引操作

print(x[:,1])
tensor([0.1733, 0.5943, 0.9015, 0.1385, 0.2001])

改变大小

import torch

x=torch.rand(4,4)
y=x.view(16)
z=x.view(-1,8)#-1是不用填从其他的维度推测的
print(x.size(),y.size(),z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

获取值

import torch
x=torch.rand(1)
print(x)
print(x.item())
tensor([0.5210])
0.5209894180297852

学习自http://pytorch123.com/SecondSection/what_is_pytorch/

【pytorch】学习笔记(一)-张量的更多相关文章

  1. [PyTorch 学习笔记] 1.4 计算图与动态图机制

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深 ...

  2. [PyTorch 学习笔记] 4.3 优化器

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...

  3. [PyTorch 学习笔记] 1.3 张量操作与线性回归

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼 ...

  4. [PyTorch 学习笔记] 1.2 Tensor(张量)介绍

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https: ...

  5. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  6. Pytorch学习笔记(一)---- 基础语法

    书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...

  7. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

  8. [PyTorch 学习笔记] 2.2 图片预处理 transforms 模块机制

    PyTorch 的数据增强 我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包.有 3 个主要的模块: torchvision.transforms: 里面包括常用的 ...

  9. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  10. Pytorch学习笔记(二)——Tensor

    一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.s ...

随机推荐

  1. python测试网站访问速度

    # -*- coding: utf-8 -*- # @Author : Felix Wang # @time : 2018/8/13 22:13 # pip3 install pycurl impor ...

  2. flask框架(一):初入

    1.装饰器回顾 # -*- coding: utf-8 -*- # @Author : Felix Wang # @time : 2018/7/3 17:10 import functools &qu ...

  3. objdump命令解析

    [objdump] 相关链接: 实例分析objdump反汇编用法 - 在路上 - CSDN博客  https://blog.csdn.net/u012247418/article/details/80 ...

  4. 微信小程序_(案例)简单中国天气网首页

    Demo:简单中国天气网首页 Page({ data:{ name:"CynicalGary", temp:"4", low:"-1°C", ...

  5. 网络yum源

    1,进入yum源配置目录cd /etc/yum.repos.d 2,备份系统自带的yum源mv CentOS-Base.repo CentOS-Base.repo.bk下载163网易的yum源:wge ...

  6. centos 6和centos7关闭防火墙的方法

    centos 6 关闭命令:  service iptables stop 永久关闭防火墙:chkconfig iptables off 两个命令同时运行,运行完成后查看防火墙关闭状态         ...

  7. ubuntu下编译linux内核之前需要做哪些准备?

    答: 安装必要的工具(笔者使用的ubuntu代号为bionic) sudo apt-get install -y bison flex

  8. ubuntu 18.04 64bit下如何源码编译安装anbox

    1. 准备工作 1.1 安装gcc 7.x版本 sudo apt-get install gcc-7 -y 1.2 安装依赖的库及其工具 sudo apt install build-essentia ...

  9. SSD 页、块、垃圾回收

    基本操作: 读出.写入.擦除: 因为NAND闪存单元的组织结构限制,单独读写一个闪存单元是不可能的.存储单元被组织起来并有着十分特别的属性.要知道这些属性对于为固态硬盘优化数据结构的过程和理解其行为来 ...

  10. web搜索框的制作(必应)

    搜索框中我们输入一些字或者字母,为何下面就会有一些自动补齐的相关搜索,比如我在搜索输入框中输入一个字母e,下面就会出现饿了么,e租宝,ems等相关的搜索链接.然后经过百度,发现原来很多厂商的服务器早已 ...