【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治
【BZOJ2726】[SDOI2012]任务安排
Description
Input
Output
Sample Input
1 3
3 2
4 3
2 3
1 4
Sample Output
题解:用f[i]表示做完前i个任务的最小费用,但是做完当前任务的时间对后面的任务也会造成影响,所以我们提前应计算费用,不难列出方程:
设st表示T的前缀和,sf表示F的前缀和,所以有:
$f[i]=\min \{ f[j]+(st[i]-st[j]+S)*(sf[n]-sf[j])\}$
移个项显然就变成了斜率优化的形式。不过坑的地方是,T可能是负数,所以斜率不是单调的,所以用cdq分治即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=300010;
typedef long long ll;
typedef long double ld;
int n;
ll S;
struct node
{
int x,org,k;
ll y,f;
}s[maxn],p[maxn];
int q[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
bool cmpk(const node &a,const node &b)
{
return a.k>b.k;
}
bool cmpo(const node &a,const node &b)
{
return a.org<b.org;
}
inline ld slope(int a,int b)
{
if(s[a].x==s[b].x) return (s[b].y>=s[a].y)?(1e20):(-1e20);
else return ld(s[b].y-s[a].y)/(s[b].x-s[a].x);
}
void solve(int l,int r)
{
if(l==r)
{
s[l].y=(ll)s[l].x*(s[l].k-S)-s[l].f;
return ;
}
register int mid=(l+r)>>1,i,h1=l,h2=mid+1;
for(i=l;i<=r;i++)
{
if(s[i].org<=mid) p[h1++]=s[i];
else p[h2++]=s[i];
}
for(i=l;i<=r;i++) s[i]=p[i];
solve(l,mid);
register int h=1,t=0;
for(i=l;i<=mid;i++)
{
while(h<t&&slope(q[t],i)>=slope(q[t-1],q[t])) t--;
q[++t]=i;
}
for(i=mid+1;i<=r;i++)
{
while(h<t&&slope(q[h],q[h+1])>=s[i].k) h++;
s[i].f=min(s[i].f,s[q[h]].f+s[q[h]].x*(s[i].k-s[q[h]].k+S));
}
solve(mid+1,r);
h1=l,h2=mid+1;
for(i=l;i<=r;i++)
{
if(h1<=mid&&(h2>r||s[h1].x<s[h2].x)) p[i]=s[h1++];
else p[i]=s[h2++];
}
for(i=l;i<=r;i++) s[i]=p[i];
}
int main()
{
n=rd(),S=rd();
int i;
for(i=1;i<=n;i++) s[i].k=s[i-1].k+rd(),s[i-1].x=rd(),s[i].org=i;
for(i=n-1;i>=0;i--) s[i].x+=s[i+1].x;
for(i=1;i<=n;i++) s[i].f=s[0].x*(s[i].k+S);
sort(s+1,s+n+1,cmpk);
solve(1,n);
sort(s+1,s+n+1,cmpo);
printf("%lld",s[n].f);
return 0;
}
【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治的更多相关文章
- [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算
题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...
- BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...
- BZOJ2726 [SDOI2012]任务安排 【斜率优化 + cdq分治】
题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i ...
- [Noi2014]购票 BZOJ3672 点分治+斜率优化+CDQ分治
Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...
- 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 3396 Solved: 1434[Submit][Sta ...
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)
按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器. ...
- bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)
设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...
- BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 868 Solved: 236[Submit][Status ...
随机推荐
- java语言国际化--ResouceBundle、struts
一.Java国际化 我们使用java.lang.Locale来构造Java国际化的情境. java.lang.Locale代表特定的地理.政治和文化.需要Locale来执行其任务的操作叫语言环境敏感的 ...
- int main() 与 int _tmain()
用过C的人都知道每一个C的程序都会有一个main(),但有时看别人写的程序发现主函数不是int main(),而是int _tmain(),而且头文件也不是<iostream.h>而是&l ...
- Mysql 比较运算符详解
熟悉了最简单的算术运算符,再来看一下比较运算符.当使用SELECT 语句进行查询时,MySQL允许用户对表达式的左边操作数和右边操作数进行比较,比较结果为真,则返回1,为假则返回0,比较结果不确定则返 ...
- Jquery easyUI datagrid载入复杂JSON数据方法
1.JSON数据为: { "total":28, "rows": [ { "itemNo": "1&q ...
- PHP 生成唯一的激活码
<? php /** * 生成永远唯一的激活码 * @return string */ function create_guid($namespace = null) { static $gui ...
- 再谈API GateWay服务网关
前面在谈微服务架构的时候,我博客上转过Chris Richardson 微服务系列中对微服务网关的描述: 通常来说,使用 API 网关是更好的解决方式.API 网关是一个服务器,也可以说是进入系统的唯 ...
- JACKSON JSON 操作帮助类
一. 引入POM <dependency> <groupId>net.sf.json-lib</groupId> <artifactId>json-li ...
- ov5640 video capture时,vfe_v4l2.ko模块挂掉问题分析
1.问题描述 在r16 tina平台,基于ov5640获取摄像头数据时,vfe_v4l2.ko模块挂掉. 2.配置信息 2.1上层应用设置的像素格式为V4L2_PIX_FMT_YUYV,分辨率为480 ...
- 深入 Spring 系列之静态资源处理
http://blog.csdn.net/xichenguan/article/details/52794862
- python用time函数计算程序运行时间
内置模块time包含很多与时间相关函数.我们可通过它获得当前的时间和格式化时间输出. time(),以浮点形式返回自Linux新世纪以来经过的秒数.在linux中,00:00:00 UTC, Janu ...