原题:CF402D

【错解】

唔,先打个表看看

咦,没有坏质数好像就是质因数个数啊

那有坏质数呢?

好像变负数了

推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1

然后乱搞,起码花了2个小时

【正解】

用脚趾头想一想都知道怎么可能长这样的?

如果最小质因数是坏的,就去掉-1;否则去掉+1

即好质因数-坏质因数

开个bitset记坏质数,然后先筛一下,计算的时候分解\(\sqrt{1e9}\)质因数就好

对于GCD:因为g[i]%g[i+1]==0,所以后面的操作对前面没有影响

所以预处理前缀GCD,然后从后往前算f,如果<0就除一下

另外:分解质因数应先筛出质数,然后枚举\(\sqrt{X}\)内的质数,一个个分解,最后如果X不为1再把自己加上

复杂度\(O(\sqrt{max(A_i)}+\frac{N\sqrt{N}}{log \sqrt{N}})\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <bitset>
#define MAXN 2005
#define MAX 1000000
using namespace std;
typedef long long ll;
bitset<1000000005> S;
inline int read()
{
int ans=0,f=1;
char c=getchar();
while (!isdigit(c))
{
if (c=='-') f=-1;
c=getchar();
}
while (isdigit(c))
ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return f*ans;
}
int n,m;
bool np[MAX+5];
int pl[MAX+5],cnt;
void init()
{
np[1]=1;
for (int i=2;i<=MAX;i++)
{
if (!np[i])
pl[++cnt]=i;
for (int j=1;j<=cnt&&i*pl[j]<=MAX;j++)
{
np[i*pl[j]]=1;
if (i%pl[j]==0) break;
}
}
}
int calc(int x)
{
if (x==1) return 0;
int ans=0;
bool flag=false;
for (int i=1;i<=cnt&&pl[i]*pl[i]<=x;i++)
while (x%pl[i]==0)
{
ans+=(S[pl[i]]? -1:1);
x/=pl[i];
}
if(x!=1)ans+=(S[x]? -1:1);
return ans;
}
int a[MAXN],b[MAXN];
int gcd(int a,int b)
{
return b? gcd(b,a%b):a;
}
int g[MAXN];
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=1;i<=m;i++) S[read()]=1;
init();
for (int i=1;i<=n;i++) g[i]=gcd(g[i-1],a[i]);
ll ans=0;
for (int i=1;i<=n;i++) ans+=calc(a[i]);
int lazy=1;
for (int i=n;i>=1;i--)
{
g[i]/=lazy;
int t=calc(g[i]);
if (t<0)
{
ans-=(ll)t*i;
lazy*=g[i];
}
}
cout<<ans;
return 0;
}

【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】的更多相关文章

  1. Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论

    题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...

  2. Gym 101981J - Prime Game - [数学题][线性筛+分解质因数][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem J]

    题目链接:http://codeforces.com/gym/101981/attachments 题意: 令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ ...

  3. 【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd

    思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了. http://www.cnblogs.com/autsky-jadek/p/7491730.html #include<cst ...

  4. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

  5. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  6. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  7. luogu 3708 koishi的数学题 递推 线性筛

    题目链接 题意 输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\). 输入输出格式 ...

  8. * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)

    题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...

  9. 济南学习D3T1__线性筛和阶乘质因数分解

    [问题描述] 从1− N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数最大可能是多少. [输入格式] 第一行一个数字N. [输出格式] 一行,一个整数代表答案对100000007取模之后的 ...

随机推荐

  1. jquery 生成二维码

    jquery的二维码生成插件qrcode,在页面中调用该插件就能生成对应的二维码 <!DOCTYPE html> <html> <head> <meta ch ...

  2. php sprintf格式化注入

    URL:http://efa4e2c2b8df4ce69454639f4e3727071652c31167f341a4.game.ichunqiu.com/ 简单的说就是sprintf中%1$\'会将 ...

  3. 不相交集ADT--链表实现

    每一个集合用用一个链表来表示.链表的第一个对象作为它所在集合的代表.链表中每个对象都包含一个集合成员,一个指向下一个对象的指针,以及指向代表的指针.每个链表含head和tail指针,head指向链表的 ...

  4. c++动态规划dp算法题

    问题1:找硬币,换钱的方法 输入: penny数组代表所有货币的面值,正数不重复 aim小于等于1000,代表要找的钱 输出:换钱的方法总数 解法1:经典dp,空间复杂度O(n*aim) class ...

  5. Codeigniter的一些优秀实践

    最近准备接手改进一个别人用Codeigniter写的项目,虽然之前也有用过CI,但是是完全按着自己的意思写的,没按CI的一些套路.用在公众的项目,最好还是按框架规范来,所以还是总结一下,免得以后别人再 ...

  6. Flume(一)Flume的基础介绍与安装

    一.背景 Hadoop业务的整体开发流程: 从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步. 许多公司的平台每天会产生大量的日志 ...

  7. pyqt5改变窗体颜色

    from PyQt5.QtWidgets import QApplication,QWidget from PyQt5.QtGui import QColor import sys from t im ...

  8. Deepin 2015 火狐 Firefox安装Flash

    1.sudo apt-get install flashplugin-nonfree 2.至Abobe官网下载最新的Linux版本flash安装包,选择.tar.gz类型,下载(https://get ...

  9. Codeforces Round #292 (Div. 1) C - Drazil and Park

    C - Drazil and Park 每个点有两个值Li 和 Bi,求Li + Rj (i < j) 的最大值,这个可以用线段树巧妙的维护.. #include<bits/stdc++. ...

  10. bzoj 1123 tarjan求割点

    #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk mak ...