Matrix-tree定理,给出一个无向图,问求出的生成树方案有多少种方案,利用Matrix-tree定理,主对角线第i行是i的度数,(i,j) 值为i和j之间边的数量,然后删去第一行第一列,利用初等变换求出行列式的绝对值就是答案。

附上代码——by VANE

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll c[][],tmp[];
int main()
{
int T,m,u,v;
ll t,ans;
scanf("%d",&T);
while(T--)
{
memset(c,,sizeof c);
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d",&u,&v);
u--;v--;
c[u][v]--;c[v][u]--;
c[u][u]++;c[v][v]++;
}
ans=;
for(int i=;i<n;++i)
{
for(int j=i+;j<n;++j)
while(c[j][i])
{
t=c[i][i]/c[j][i];
for(int k=i;k<n;++k) c[i][k]-=c[j][k]*t;
for(int k=i;k<n;++k) swap(c[i][k],c[j][k]);
ans=-ans;
}
ans*=c[i][i];
if(!ans) break;
}
ans=max(ans,-ans);
printf("%lld\n",ans);
}
}

UPD:对于有向图而言

1、无向图中是双向边,所以一条边(u,v)会使度数矩阵的(u;u)和(v;v)元都加一,现 在变成有向图,只让其中一个加一即可。

2、同理,邻接矩阵也从(u;v)元和(v;u)加一变成其中一个加一。

3、基尔霍夫矩阵还是度数减邻接。

4、无向图是任意删去一行一列,有向图中是删除“根节点”所在行列求 行列式。

Matrix-tree定理 spoj HIGH的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  5. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  6. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  7. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  8. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  9. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  10. [模板]Matrix Tree定理

    结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...

随机推荐

  1. laravel中form表单,ajax传值没反应

    laravel中form表单,ajax传值没反应时,可能是令牌有问题. form中添加: {{csrf_token()}} ajax中添加: data: {'page': page, '_token' ...

  2. 8、V模型、W模型、H模型

    软件测试&软件工程 ·软件测试与软件工程息息相关,软件测试是软件工程组成中不可或缺的一部分.·在软件工程.项目管理.质量管理得到规范化应用的企业,软件测试也会进行得比较顺利,软件测试发挥的价值 ...

  3. 解决 IE7 中 display:inline-block 失效的问题

    我们在做首页菜单选项的时候,通常会用 li 标签去做,通过对 li 标签设置样式: display:inline-block 可以让 li 标签横排显示.但是这样做,在 IE7 浏览器下面会有一个兼容 ...

  4. Network POJ - 3694 (LCA+tarjan+桥)

    题目链接:https://vjudge.net/problem/POJ-3694 具体思路:首先可以通过缩点的方式将整个图变成一个树,并且树的每条边是桥,但是我们可以利用dfn数组将整个图变成树,这样 ...

  5. linux系统cpu使用100%的命令

    for i in `seq 1 $(cat /proc/cpuinfo |grep "physical id" |wc -l)`; do dd if=/dev/zero of=/d ...

  6. Zabbix3.0源码安装

    环境:nginx1.6.3 php-5.6.22 mysql-5.5.49 请参考前面的博文自行搭建 安装依赖并创建用户 [root@test88 ~]# yum install -y libxml2 ...

  7. Windows: 在系统启动时运行程序、定时计划任务、定时关机

    lesca今天介绍一些让系统在启动时,而非登录时,加载用户自定义的应用程序或脚本的方法,推荐度从前到后依次递减. 1. Windows任务计划(task scheduler) 用户可以按以下步骤进行操 ...

  8. Java容器---基本概念

    1.持有对象 Java容器类类库的用途是“保存对象”,并将其划分为两个不同的概念: (1) Collection: 一个独立元素的序列,这些元素都服从一条或多条规则.List必须按照插入的顺序保存元素 ...

  9. hdu 5001(概率DP)

    Walk Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  10. CSU 1102 多连块拼图

    多连块拼图 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述     多连块是指由多个等大正方形边与边连接而成的平面连通图形.         ———— 维基百科      ...