Matrix-tree定理,给出一个无向图,问求出的生成树方案有多少种方案,利用Matrix-tree定理,主对角线第i行是i的度数,(i,j) 值为i和j之间边的数量,然后删去第一行第一列,利用初等变换求出行列式的绝对值就是答案。

附上代码——by VANE

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll c[][],tmp[];
int main()
{
int T,m,u,v;
ll t,ans;
scanf("%d",&T);
while(T--)
{
memset(c,,sizeof c);
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d",&u,&v);
u--;v--;
c[u][v]--;c[v][u]--;
c[u][u]++;c[v][v]++;
}
ans=;
for(int i=;i<n;++i)
{
for(int j=i+;j<n;++j)
while(c[j][i])
{
t=c[i][i]/c[j][i];
for(int k=i;k<n;++k) c[i][k]-=c[j][k]*t;
for(int k=i;k<n;++k) swap(c[i][k],c[j][k]);
ans=-ans;
}
ans*=c[i][i];
if(!ans) break;
}
ans=max(ans,-ans);
printf("%lld\n",ans);
}
}

UPD:对于有向图而言

1、无向图中是双向边,所以一条边(u,v)会使度数矩阵的(u;u)和(v;v)元都加一,现 在变成有向图,只让其中一个加一即可。

2、同理,邻接矩阵也从(u;v)元和(v;u)加一变成其中一个加一。

3、基尔霍夫矩阵还是度数减邻接。

4、无向图是任意删去一行一列,有向图中是删除“根节点”所在行列求 行列式。

Matrix-tree定理 spoj HIGH的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  5. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  6. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  7. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  8. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  9. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  10. [模板]Matrix Tree定理

    结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...

随机推荐

  1. 十二步创建你的第一个JavaScript库

    是否曾对Mootools的魔力感到惊奇?是否有想知道Dojo如何做到那样的?是否对jQuery感到好奇?在这个教程中,我们将了解它们背后的东西并且动手创建一个超级简单的你最喜欢的库. 我们其乎每天都在 ...

  2. 关于static关键字

    static用于修饰成员(成员变量,成员函数),不能修饰局部变量被修饰的变量和函数是静态的,可被多个对象共享,节省内存可以直接被类名调用++++++++++++++++++++++++++++++++ ...

  3. 【leetcode 简单】第四题 罗马数字转整数

    罗马数字包含以下七种字符:I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列 ...

  4. Sublime删除项目删不掉?

    最近用sublime进行项目的开发,感觉懵逼的像个小白菜~~ 今天遇到的问题可是一个超级白痴的问题,sublime的空白项目文件夹怎么都删不掉,我的傻逼操作是:选中文件--->Delete--- ...

  5. Markdown tutorial [repost]

    1. italic We'll start by learning two basic elements in text formatting: italics and bold. In these ...

  6. 16级第二周寒假作业H题

    快速幂(三) TimeLimit:2000MS  MemoryLimit:128MB 64-bit integer IO format:%I64d Problem Description 计算( AB ...

  7. 概述sysfs文件系统【转】

    转自:http://blog.csdn.net/npy_lp/article/details/78933292 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 sys ...

  8. onvif客户端

    前言 做开发有8年时间了,ffmpeg和onvif与我是特别有缘的了(说着玩的,我更认为是因为他们确实强大^_^). ffmpeg在毕业设计时就有用到,5年后做windows.linux播放库时又有用 ...

  9. #题目:有10 台被监控主机、一台监控机,在监控机上编写脚本,一旦某台被监控机器/ 分区适用率大于80%, 就发邮件报警放到crontab 里面, 每10 分钟检查一次

    #题目:有10 台被监控主机.一台监控机,在监控机上编写脚本,一旦某台被监控机器/ 分区适用率大于80%, 就发邮件报警放到crontab 里面, 每10 分钟检查一次 #测试机器:虚拟机Linux ...

  10. Java 序列化工具类

    import org.slf4j.Logger; import org.slf4j.LoggerFactory; import sun.misc.BASE64Decoder; import sun.m ...