There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.

Input

The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.

Output

You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.

Sample Input

3
0 990 692
990 0 179
692 179 0
1
1 2

Sample Output

179
解题思路:

要修公路,输入一个n,表示n个村庄。接着输入n*n的矩阵,然后输入一个q 接下来的q行

每行包含两个数a,b,表示a、b这条边联通,就是已经有公路不用修了,要让所有村庄联通在一起问:修路最小代价?

最小生成树的变形,有的村庄已经连接了,就直接把他们的权值赋为0,一样的做最小生成树,Prim算法。

代码如下:

 #include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std; int N;
int dis[][];
bool vis[][];
struct edge{
int u;
int v;
int w;
}e[];
int pre[];
int find(int x)
{
return (x==pre[x])?x:pre[x] = find(pre[x]);
}
bool cmp(edge a , edge b)
{
return a.w<b.w;
}
int Q;
int main()
{
scanf("%d",&N);
for(int i = ; i <= N;i++)
{
pre[i] = i;
}
for(int i = ; i <= N ;i++)
{
for(int j = ; j <= N ;j++)
{
scanf("%d",&dis[i][j]);
}
} int x , y;
scanf("%d",&Q);
int edge_num = ;
while(Q--)
{
scanf("%d%d",&x,&y);
dis[x][y] = ;
dis[y][x] = ;
}
for(int i = ;i <= N ;i++)
{
for(int j = ; j <= N; j++)
{ e[edge_num].u = i;
e[edge_num].v = j;
e[edge_num].w = dis[i][j];
edge_num++;
}
} sort(e,e+edge_num,cmp);
int u , v , w;
int fx ,fy;
int ans = ;
for(int i = ; i < edge_num ;i++)
{
u = e[i].u;
v = e[i].v;
w = e[i].w; fx = find(u);
fy = find(v); if(fx!=fy)
{
pre[fx] = fy;
ans += w;
}else
{
continue;
}
}
printf("%d\n",ans);
return ;
}

POJ - 2421 Constructing Roads (最小生成树)的更多相关文章

  1. POJ 2421 Constructing Roads (最小生成树)

    Constructing Roads Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  2. POJ 2421 Constructing Roads (最小生成树)

    Constructing Roads 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/D Description There ar ...

  3. POJ - 2421 Constructing Roads 【最小生成树Kruscal】

    Constructing Roads Description There are N villages, which are numbered from 1 to N, and you should ...

  4. POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )

    Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19884   Accepted: 83 ...

  5. POJ 2421 Constructing Roads(最小生成树)

    Description There are N villages, which are numbered from 1 to N, and you should build some roads su ...

  6. [kuangbin带你飞]专题六 最小生成树 POJ 2421 Constructing Roads

    给一个n个点的完全图 再给你m条道路已经修好 问你还需要修多长的路才能让所有村子互通 将给的m个点的路重新加权值为零的边到边集里 然后求最小生成树 #include<cstdio> #in ...

  7. Poj 2421 Constructing Roads(Prim 最小生成树)

    题意:有几个村庄,要修最短的路,使得这几个村庄连通.但是现在已经有了几条路,求在已有路径上还要修至少多长的路. 分析:用Prim求最小生成树,将已有路径的长度置为0,由于0是最小的长度,所以一定会被P ...

  8. POJ - 2421 Constructing Roads(最小生成树&并查集

    There are N villages, which are numbered from 1 to N, and you should build some roads such that ever ...

  9. poj 2421 Constructing Roads 解题报告

    题目链接:http://poj.org/problem?id=2421 实际上又是考最小生成树的内容,也是用到kruskal算法.但稍稍有点不同的是,给出一些已连接的边,要在这些边存在的情况下,拓展出 ...

随机推荐

  1. unity配置最簡單程序

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using Microsoft.Pr ...

  2. MyBatis 体系结构

  3. C#匿名类型 - Anonymous Types

    [C#匿名类型 - Anonymous Types] Anonymous types provide a convenient way to encapsulate a set of read-onl ...

  4. 如果习惯VisualStudio,可以如下实现.Shader文件的语法高亮。

    如果习惯VisualStudio,可以如下实现.Shader文件的语法高亮. 下载作者donaldwu自己添加的关键词文件usertype.dat.其包括了Unity ShaderLab的部分关键字, ...

  5. 我为什么使用Kubuntu

    网上看贴,包括身边的同事.朋友,总会问的问题是:我该选择哪个Linux发行版?使用久了,就会觉得这个问题其实不是问题,纯属个人习惯而已,当你真正习惯.理解了Linux,那么任何一个发行版的优点,你都有 ...

  6. Java-Excel文件读取

    import java.io.File; import java.io.IOException; import org.testng.annotations.DataProvider; import ...

  7. 函数用途:同一域名对应多个IP时,获取指定服务器的远程网页内容

    <?php /************************ * 函数用途:同一域名对应多个IP时,获取指定服务器的远程网页内容 * 创建时间:2008-12-09 * 创建人:张宴(img. ...

  8. GitHub 上的十一款热门开源安全工具

    作为开源开发领域的基石,“所有漏洞皆属浅表”已经成为一条著名的原则甚至是信条.作为广为人知的Linus定律,当讨论开源模式在安全方面的优势时,开放代码能够提高项目漏洞检测效率的理论也被IT专业人士们所 ...

  9. DPDK收发包全景分析

    前言:DPDK收发包是基础核心模块,从网卡收到包到驱动把包拷贝到系统内存中,再到系统对这块数据包的内存管理,由于在处理过程中实现了零拷贝,数据包从接收到发送始终只有一份,对这个报文的管理在前面的mem ...

  10. Boost::lexical_cast类型转换

    1.字符串->数值 C++代码 #include <boost/lexical_cast.hpp> #include <iostream> int main() { us ...