题目链接:戳我

其实我并不会做,于是看了题解

我们都知道主席树是利用前缀和记录历史版本来搞区间K大的一种数据结构。不过一般的主席树只能搞定静态区间第K大。如果带修怎么办呢?

想一下。。。单点修改+区间查询,我们是否能想到树状数组呢?

那么思路就出来了。用树状数组来维护主席树的前缀和!!这里的主席树只需要维护对于每个节点所包含的值域区间中数的个数即可,不需要继承历史版本。

单次操作复杂度两个log,应该是稳稳的了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100010
using namespace std;
inline int read()
{
int f=1,x=0; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48); ch=getchar();}
return x*f;
}
int n,m,q_cnt,cnt,tot,cnt1,cnt2;
int a[MAXN],S[MAXN],rt[MAXN],tmp1[MAXN],tmp2[MAXN];
struct Node{int l,r,k,pos,t;}q[MAXN];
struct Node2{int ls,rs,v;}t[MAXN<<5];
inline void modify(int &now,int l,int r,int pos,int k)
{
if(!now) now=++tot;
t[now].v+=k;
if(l==r) return;
int mid=(l+r)>>1;
if(pos<=mid) modify(t[now].ls,l,mid,pos,k);
else modify(t[now].rs,mid+1,r,pos,k);
}
inline void pre_modify(int x,int k)
{
int pos=lower_bound(&S[1],&S[1+cnt],a[x])-S;
for(int i=x;i<=n;i+=i&(-i))
modify(rt[i],1,cnt,pos,k);
}
inline int query(int l,int r,int k)
{
if(l==r) {return S[l];}
int cur_ans=0;
for(int i=1;i<=cnt1;i++) cur_ans+=t[t[tmp1[i]].ls].v;
for(int i=1;i<=cnt2;i++) cur_ans-=t[t[tmp2[i]].ls].v;
int mid=(l+r)>>1;
if(cur_ans>=k)
{
for(int i=1;i<=cnt1;i++) tmp1[i]=t[tmp1[i]].ls;
for(int i=1;i<=cnt2;i++) tmp2[i]=t[tmp2[i]].ls;
return query(l,mid,k);
}
else
{
for(int i=1;i<=cnt1;i++) tmp1[i]=t[tmp1[i]].rs;
for(int i=1;i<=cnt2;i++) tmp2[i]=t[tmp2[i]].rs;
return query(mid+1,r,k-cur_ans);
}
}
inline void pre_query(int l,int r,int k)
{
cnt1=cnt2=0;
for(int i=r;i;i-=i&(-i)) tmp1[++cnt1]=rt[i];
for(int i=l;i;i-=i&(-i)) tmp2[++cnt2]=rt[i];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) a[i]=read(),S[++cnt]=a[i];
for(int i=1;i<=m;i++)
{
char cur[10];
scanf("%s",cur);
if(cur[0]=='Q') q[i]=(Node){read()-1,read(),read(),0,0};
else q[i]=(Node){0,0,0,read(),read()},S[++cnt]=q[i].t;
}
sort(&S[1],&S[cnt+1]);
cnt=unique(&S[1],&S[cnt+1])-S-1;
for(int i=1;i<=n;i++) pre_modify(i,1);
for(int i=1;i<=m;i++)
{
if(q[i].k!=0)
{
pre_query(q[i].l,q[i].r,q[i].k);
printf("%d\n",query(1,cnt,q[i].k));
}
else
{
pre_modify(q[i].pos,-1);
a[q[i].pos]=q[i].t;
pre_modify(q[i].pos,1);
}
}
}

BZOJ1901 Dynamic Rankings|带修主席树的更多相关文章

  1. 【BZOJ-1901】Dynamic Rankings 带修主席树

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7292  Solved: 3038[Su ...

  2. [luogu P2617] Dynamic Rankings 带修主席树

    带修改的主席树,其实这种,已经不能算作主席树了,因为这个没有维护可持久化的... 主席树直接带修改的话,由于这种数据结构是可持久化的,那么要相应改动,这个节点以后所有的主席树,这样单次修改,就达到n* ...

  3. BZOJ 1901: Zju2112 Dynamic Rankings | 带修改主席树

    题目: emmmm是个权限题 题解: 带修改主席树的板子题,核心思想是用树状数组维护动态前缀和的性质来支持修改 修改的时候修改类似树状数组一样进行logn个Insert 查询的时候同理,树状数组的方法 ...

  4. P2617 Dynamic Rankings(带修主席树)

    所谓带修主席树,就是用树状数组的方法维护主席树的前缀和 思路 带修主席树的板子 注意数据范围显然要离散化即可 代码 #include <cstdio> #include <cstri ...

  5. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  6. 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)

    P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...

  7. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

  8. bzoj1901: Zju2112 Dynamic Rankings(BIT套主席树)

    带修改的题主席树不记录前缀,只记录单点,用BIT统计前缀.  对于BIT上每一个点建一棵主席树,修改和询问的时候用BIT跑,在主席树上做就行了.  3k4人AC的题#256...应该不算慢 #incl ...

  9. 带修主席树 洛谷2617 支持单点更新以及区间kth大查询

    题目链接:https://www.luogu.com.cn/problem/P2617 参考博客:https://blog.csdn.net/dreaming__ldx/article/details ...

随机推荐

  1. PHP - 用户异常断开连接,脚本强制继续执行,异常退出回调

    试想如下情况.如果你的用户正在执行一个需要非常长的执行时间的操作.他点了执行了之后,浏览器就开始蛋疼地转.如果执行5分钟,你猜他会干啥,显然会觉得什么狗屎垃圾站,这么久都不响应,然后就给关了.当然这个 ...

  2. web前端整套面试题(一)--js相关

    一.单选 1.以下哪条语句会产生运行:(A) A.var obj = ( ); B.var obj = [ ]; C.var obj = { }; D.var obj = / /; B代表数组,C代表 ...

  3. FP回写报错

    报错信息如下: 提示java for mo 2022报错 执行的DTS如下: 解决方法:(原因:SAP归档日志满了,导致连接失败)1.检查表temp_out_pr中的siteid是否有三个工厂的数据确 ...

  4. CS4.1 RPM打包函数分析

    shell举例说明:脚本名称叫test.sh 入参三个: 1 2 3运行test.sh 1 2 3后$*为"1 2 3"(一起被引号包住)$@为"1" &quo ...

  5. shiro 集成spring 配置 学习记录(一)

    首先当然是项目中需要增加shiro的架包依赖: <!-- shiro --> <dependency> <groupId>org.apache.shiro</ ...

  6. Openssl sess_id命令

    一.简介 sess_id指令是一个调试工具,用来处理SSL_SESSION结构的,可以打印出其中的细节 二.语法 openssl sess_id [-inform PEM|DER] [-outform ...

  7. Openssl rsautl命令

    一.简介 rsautl指令能够使用RSA算法签名,验证身份,加密/解密数据 二.语法 openssl rsautl [-in file] [-out file] [-inkey file] [-pas ...

  8. 添加字段modify

    ALTER TABLE tc_activity_turntable ADD `foot_pic` VARCHAR () NOT NULL DEFAULT '' COMMENT '底部图片';

  9. sscanf高级用法级正则表达式

    sscanf高级用法级正则表达式  摘自:https://www.cnblogs.com/bluestorm/p/6864540.html sscanf与scanf类似,都是用于输入的,只是后者以屏幕 ...

  10. Oracle Nested table、Record

    1.如何在PL/SQL中创建和使用Nested table;2.如何在PL/SQL中创建和使用Record; 1.如何在PL/SQL中创建和使用Nested table DECLARE /**创建一个 ...