一、基础DDL练习

SHOW DATABASES;

CREATE DATABASE IF NOT EXISTS db1 COMMENT 'Our database db1';

SHOW DATABASES;

DESCRIBE DATABASE db1;

CREATE TABLE db1.table1 (word STRING, count INT);

SHOW TABLES in db1;

DESCRIBE db1.table1;

USE db1;

SHOW TABLES;

SELECT * FROM db1.table1;

DROP TABLE table1;

DROP DATABASE db1;

USE default;

二、基础DML语句

创建表
create table if not exists user_dimension (
uid STRING,
name STRING,
gender STRING,
birth DATE,
province STRING
)ROW FORMAT DELIMITED //按行切分的意思
FIELDS TERMINATED BY ',' //按逗号分隔的
查看表信息
describe user_dimension; show create table user_dimension; 查看所有表
show tables; 载入本地数据
load data local inpath '/home/orco/tempdata/user.data' overwrite into table user_dimension; 载入HDFS上的数据
load data inpath '/user/orco/practice_1/user.data' overwrite into table user_dimension; 验证
select * from user_dimension; 查看hive在hdfs上的存储目录
hadoop fs -ls /warehouse/
hadoop fs -ls /warehouse/user_dimension

三、复杂数据类型

示例2:
CREATE TABLE IF NOT EXISTS employees (
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE; //最后这一行,是默认,可以不写 载入数据
load data local inpath ' /home/orco/tempdata/data/employees.txt' overwrite into table employees ; 查询数据
SELECT name, deductions['Federal Taxes'] FROM employees WHERE deductions['Federal Taxes'] > 0.2; SELECT name, deductions['Federal Taxes'] FROM employees WHERE deductions['Federal Taxes'] > cast( 0.2 as float); SELECT name FROM employees WHERE subordinates[] = 'Todd Jones'; SELECT name, address FROM employees WHERE address.street RLIKE '^.*(Ontario|Chicago).*$';

四、数据模型-分区

为减少不必要的暴力数据扫描,可以对表进行分区,为避免产生过多小文件,建议只对离散字段进行分区

建表
CREATE TABLE IF NOT EXISTS stocks (
ymd DATE,
price_open FLOAT,
price_high FLOAT,
price_low FLOAT,
price_close FLOAT,
volume INT,
price_adj_close FLOAT
)
PARTITIONED BY (exchanger STRING, symbol STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 载入数据
load data local inpath '/home/orco/resources/apache-hive-2.1.1-bin/hivedata/stocks/NASDAQ/AAPL/stocks.csv' overwrite into table stocks partition(exchanger="NASDAQ", symbol="AAPL"); show partitions stocks; load data local inpath '/home/orco/resources/apache-hive-2.1.1-bin/hivedata/stocks/NASDAQ/INTC/stocks.csv' overwrite into table stocks partition(exchanger="NASDAQ", symbol="INTC"); load data local inpath '/home/orco/resources/apache-hive-2.1.1-bin/hivedata/stocks/NYSE/GE/stocks.csv' overwrite into table stocks partition(exchanger="NYSE", symbol="GE"); show partitions stocks; 查询
SELECT * FROM stocks WHERE exchanger = 'NASDAQ' AND symbol = 'AAPL' LIMIT 10; SELECT ymd, price_close FROM stocks WHERE exchanger = 'NASDAQ' AND symbol = 'AAPL' LIMIT 10; 查看HDFS文件目录
hadoop fs -ls /warehouse/stocks/ hadoop fs -ls /warehouse/stocks/exchanger=NASDAQ hadoop fs -ls /warehouse/stocks/exchanger=NASDAQ/symbol=AAPL

六、外部表

external关键字,删除表时,外部表只删除元数据,不删除数据,更加安全

数据
hadoop fs -put stocks /user/orco/ 创建外部表
CREATE EXTERNAL TABLE IF NOT EXISTS stocks_external (
ymd DATE,
price_open FLOAT,
price_high FLOAT,
price_low FLOAT,
price_close FLOAT,
volume INT,
price_adj_close FLOAT
)
PARTITIONED BY (exchanger STRING, symbol STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION '/user/orco/stocks'; select * from stocks_external; 载入数据
alter table stocks_external add partition(exchanger="NASDAQ", symbol="AAPL") location '/user/orco/stocks/NASDAQ/AAPL/' show partitions stocks_external; select * from stocks_external limit 10; alter table stocks_external add partition(exchanger="NASDAQ", symbol="INTC") location '/user/orco/stocks/NASDAQ/INTC/'; alter table stocks_external add partition(exchanger="NYSE", symbol="IBM") location '/user/orco/stocks/NYSE/IBM/'; alter table stocks_external add partition(exchanger="NYSE", symbol="GE") location '/user/orco/stocks/NYSE/GE/'; show partitions stocks_external; 查询
SELECT * FROM stocks_external WHERE exchanger = 'NASDAQ' AND symbol = 'AAPL' LIMIT 10; SELECT ymd, price_close FROM stocks_external WHERE exchanger = 'NASDAQ' AND symbol = 'AAPL' LIMIT 10; select exchanger, symbol,count(*) from stocks_external group by exchanger, symbol; select exchanger, symbol, max(price_high) from stocks_external group by exchanger, symbol; 删除表
删除内部表stocks
drop table stocks; 查看HDFS上文件目录
hadoop fs -ls /warehouse/ 删除外部表stocks_external
drop table stocks_external; 查看HDFS上文件目录
hadoop fs -ls /user/orco hadoop fs -ls /user/stocks

七、列式存储

在Create/Alter表的时候,可以为表以及分区的文件指定不同的格式
• Storage Formats
• Row Formats
• SerDe

STORED AS file_format
– STORED AS PARQUET
– STORED AS ORC
– STORED AS SEQUENCEFILE
– STORED AS AVRO
– STORED AS TEXTFILE

列式存储格式ORC与Parquet:存储空间

列式存储格式ORC与Parquet:性能

如何创建ORC表

create table if not exists record_orc (
rid STRING,
uid STRING,
bid STRING,
price INT,
source_province STRING,
target_province STRING,
site STRING,
express_number STRING,
express_company STRING,
trancation_date DATE
)
stored as orc; show create table record_orc; 载入数据
select * from record_orc limit 10; insert into table record_orc select * from record; select * from record_orc limit 10;

八、Lateral View,行转多列

CREATE TABLE IF NOT EXISTS employees (
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE; 查询
select name,subordinate from employees LATERAL VIEW explode(subordinates) subordinates_table AS subordinate;

九、explain

Hive练习的更多相关文章

  1. 初识Hadoop、Hive

    2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...

  2. Hive安装配置指北(含Hive Metastore详解)

    个人主页: http://www.linbingdong.com 本文介绍Hive安装配置的整个过程,包括MySQL.Hive及Metastore的安装配置,并分析了Metastore三种配置方式的区 ...

  3. Hive on Spark安装配置详解(都是坑啊)

    个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...

  4. HIVE教程

    完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那 ...

  5. 基于Ubuntu Hadoop的群集搭建Hive

    Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...

  6. hive

    Hive Documentation https://cwiki.apache.org/confluence/display/Hive/Home 2016-12-22  14:52:41 ANTLR  ...

  7. 深入浅出数据仓库中SQL性能优化之Hive篇

    转自:http://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,R ...

  8. Hive读取外表数据时跳过文件行首和行尾

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 有时候用hive读取外表数据时,比如csv这种类型的,需要跳过行首或者行尾一些和数据无关的或者自 ...

  9. Hive索引功能测试

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 从Hive的官方wiki来看,Hive0.7以后增加了一个对表建立index的功能,想试下性能是 ...

  10. 轻量级OLAP(二):Hive + Elasticsearch

    1. 引言 在做OLAP数据分析时,常常会遇到过滤分析需求,比如:除去只有性别.常驻地标签的用户,计算广告媒体上的覆盖UV.OLAP解决方案Kylin不支持复杂数据类型(array.struct.ma ...

随机推荐

  1. C#,C++Dll文件调用心得

    C#下: 1.新建-->项目-->控制台应用程序:填写各种名称之后项目新建成功:一下为默认生成方式. 2.如下,在Program.cs中添加如下代码: using System;using ...

  2. Python学习笔记6-字典Dict

    Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. >>> person ...

  3. M451定时器的寄存器讲解

    M451的定时器的寄存器的这一章节,相信很多人都清楚明白了,但还是有必要说一说的 /** * @brief Timer0 IRQ * * @param None * * @return None * ...

  4. ios8推送问题

    博文转载至  http://blog.csdn.net/cerastes/article/details/39546625 ios8push推送通知适配 ios8推送问题 registerForRem ...

  5. 【黑金原创教程】【TimeQuest】【第二章】TimeQuest模型角色,网表概念,时序报告

    声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/al ...

  6. nginx于tomcat项目整合(拆分静态文件)

    1.在很多时候我们在网站上应用的时候都会用到nginx,由于我们是java开发者,不可避免的是我们需要在我们的tomcat的工程中应用到nginx,这里的应用可以是请求转发,负载均衡,反向代理,配置虚 ...

  7. JUnit常用断言及注解

    断言是编写测试用例的核心实现方式,即期望值是多少,测试的结果是多少,以此来判断测试是否通过. 断言核心方法   assertArrayEquals(expecteds, actuals) 查看两个数组 ...

  8. 20165330 预备作业3 Linux安装及学习

    虚拟机安装 在安装VirtualBox时我的电脑一直打不开官网的下载地址,还好后面有可以打开了,于是我顺利的下载好了VirtualBox.而在运行出现了以下错误: 错误1:点击创建虚拟机时出现了以下提 ...

  9. 苏宁易购微信端 全页通过background单图

    w单图,绕开了显示的兼容性. http://res.m.suning.com/project/JoinGo/intro.html http://res.m.suning.com/project/Joi ...

  10. glibc-2.23_int_malloc_流程浅析