栈的最大值问题 max问题 min问题 队列的max问题
可以修改栈的存储方式,push,pop的操作,但是要保证O(1)的时间复杂度,空间时间复杂度无要求。
算法描述:
一个存储所有最大值的栈Sm。
1. 当push入栈的元素大于当前最大元素,将该元素压入最大值栈Sm;
2. Sm栈顶始终保存栈中当前的最大元素;
3. 当前最大元素被pop出栈时,将Sm栈顶的对应最大元素也弹出栈。
max操作即为获得Sm栈顶最大元素。
假设元素以5,4,1,2,3,10,9,8,6,7,15顺序入栈,则两个栈中存储的元素如下图所示:
常数时间空间求栈的最大值
可以修改栈的存储方式,push,pop的操作,但是要保证O(1)的时间空间复杂度。
算法描述:
变量Max保存当前最大元素值,初始值为最小整数m。
1. 当push入栈时,将(当前元素-Max)存入栈中,
若当前元素小于Max,栈中元素为负数;
若当前元素大于等于Max,栈中元素为非负数,将Max替换为当前元素。
2. 当pop出栈时,
若栈中元素为负数,则将(栈中元素+Max)弹出栈;
若栈中元素为非负数,则将Max弹出栈,并将Max替换为(Max-栈中元素)。
3. Max即为当前栈中最大元素值。
主要思路是将最大值以某种方式在原有栈中标记出来,从而减少空间使用。可以用正负数来区分普通元素和最大值元素:
普通元素使用负数存储(元素-Max);
最大值元素使用非负数存储(New Max - Old Max);
这样便可在栈中区分普通元素和最大值元素,并可通过Max恢复Old Max。
假设元素以5,4,1,2,3,10,9,8,6,7,15顺序入栈,则两个栈中存储的元素如下图所示:
1. 元素5,4,1,2,3入栈后的情况
2. 元素10,9,8,6,7入栈后的情况
3. 元素15入栈后的情况
4. 元素15出栈时的情况
5. 元素15出栈后的情况(恢复原有状态)
(修正:最后一图,Max改为10,栈中最右边的格子为空,当时画图手抖画错了...= =#)
参考:http://blog.csdn.net/taotaotheripper/article/details/8652665
快速得到最大值的队列
两个栈可以实现队列(参考),就用刚才的栈实现队列
http://www.cnblogs.com/kaituorensheng/p/3529942.html
2.设计包含min 函数的栈。
定义栈的数据结构,要求添加一个min 函数,能够得到栈的最小元素。
要求函数min、push 以及pop 的时间复杂度都是O(1)。
ANSWER:
Stack is a LIFO data structure. When some element is popped from the stack, the status will recover to the original status as before that element was pushed. So we can recover the minimum element, too.
struct MinStackElement {
int data;
int min;
};
struct MinStack {
MinStackElement * data;
int size;
int top;
}
MinStack MinStackInit(int maxSize) {
MinStack stack;
stack.size = maxSize;
stack.data = (MinStackElement*) malloc(sizeof(MinStackElement)*maxSize);
stack.top = 0;
return stack;
}
void MinStackFree(MinStack stack) {
free(stack.data);
}
void MinStackPush(MinStack stack, int d) {
if (stack.top == stack.size) error(“out of stack space.”);
MinStackElement* p = stack.data[stack.top];
p->data = d;
p->min = (stack.top==0?d : stack.data[top-1]);
if (p->min > d) p->min = d;
top ++;
}
int MinStackPop(MinStack stack) {
if (stack.top == 0) error(“stack is empty!”);
return stack.data[--stack.top].data;
}
int MinStackMin(MinStack stack) {
if (stack.top == 0) error(“stack is empty!”);
return stack.data[stack.top-1].min;
}
栈的最大值问题 max问题 min问题 队列的max问题的更多相关文章
- zip()函数,max()和min(),built-in function,import模块,read(),readlines(),write(),writelines(),with..as..文件处理方式
zip()函数:将可迭代对象作为参数,将对象中的对应元素打包成一个个元组. #map()普通的输出例子 print(list(zip(('a','n','c'),(1,2,3)))) print(li ...
- 2.10 用最少次数寻找数组中的最大值和最小值[find min max of array]
[本文链接] http://www.cnblogs.com/hellogiser/p/find-min-max-of-array.html [题目] 对于一个由N个整数组成的数组,需要比较多少次才能把 ...
- 如何在O(1)时间复杂度获取栈中最大值和最小值
问题描述: 如何在O(1)时间复杂度获取栈中的最大值和最小值? 问题分析: 普通栈规定的push(入栈).pop(出栈).peek(查看栈顶)等操作都只能在栈顶上操作,如果栈中元素是有序的,那么我们就 ...
- 维护满足max(+ or -)min<=k的区间
这是一种经典的单调栈+线段树的维护方法. 从左到右枚举右端点. 线段树维护每一个左端点的max(+ or -)min的值. 每次右端点移动的时候,把a[i]加入单调栈. 每弹栈一次,便在线段树上把对应 ...
- SQL中MAX()和MIN()函数的使用(比较字符串的大小)
在SQL数据库中,最大/最小值函数—MAX()/MIN()是经常要用到的,下面就将为您分别介绍MAX()函数和MIN()函数的使用,供您参考,希望对您学习SQL数据库能有些帮助. 当需要了解一列中的最 ...
- 带有key参数的函数filter,map,max,min
内置函数———filter def is_not_empty(s): return s and len(s.strip()) > 0 filter(is_not_empty, ['test', ...
- Python之路Python内置函数、zip()、max()、min()
Python之路Python内置函数.zip().max().min() 一.python内置函数 abs() 求绝对值 例子 print(abs(-2)) all() 把序列中每一个元素做布尔运算, ...
- Math.min() Math.max() Math.min().apply() Math.max() .apply()该如何使用???
Math.min()和 Math.max() 语法: Math.min(x,y) Math.max(x,y) 虽然能取到最小值和最大值,但是不支持数组. 那么如何计算数组中的大小值呢???????? ...
- 【MySQL】汇总数据 - avg()、count()、max()、min()、sum()函数的使用
第12章 汇总数据 文章目录 第12章 汇总数据 1.聚集函数 1.1.AVG()函数 avg() 1.2.COUNT()函数 count() 1.3. MAX()函数 max() 1.4.MIN() ...
随机推荐
- annexb模式
h264有两种封装,一种是annexb模式,传统模式,有startcode,SPS和PPS是在ES中一种是mp4模式,一般mp4 mkv会有,没有startcode,SPS和PPS以及其它信息被封装在 ...
- 【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1064 表示想到某一种情况就不敢写下去了.... 就是找环的gcd...好可怕.. 于是膜拜了题解.. ...
- 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)
http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...
- ThinkPHP项目笔记之数据库配置篇
对于配置文件,有几点说明 common:公共配置,也就是前台,后台,都可以调用的文件,具有普遍性 前台/后台:就是针对前后台的配置文件,具有针对性. 如:(公共文件基本配置) <?php ret ...
- Vim相关优化和配置
升级pythonwget https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgztar -xvf Python-3.6.5.tgzcd Pyt ...
- Java反序列化漏洞的挖掘、攻击与防御
一.Java反序列化漏洞的挖掘 1.黑盒流量分析: 在Java反序列化传送的包中,一般有两种传送方式,在TCP报文中,一般二进制流方式传输,在HTTP报文中,则大多以base64传输.因而在流量中有一 ...
- Linux安装vsftpd
卸载vsftpd sudo yum remove vsftpd 安装vsftpd sudo yum -y install vsftpd 创建一个文件夹用来当作ftp得仓库 cd / sudo mkdi ...
- style,currentStyle和getComputedStyle的区别
样式表有三种方式 内嵌样式(inline Style) :是写在Tag里面的,内嵌样式只对所有的Tag有效. 内部样式(internal Style Sheet):是写在HTML的里面的,内部样式只对 ...
- Python全栈day18(三元运算,列表解析,生成器表达式)
一,什么是生成器 可以理解为一种数据类型,这种数据类型自动实现了迭代器协议(其他数据类型需要调用自己内置的__iter__方法),所以生成器是可迭代对象. 二,生成器分类在python中的表现形式 1 ...
- 巨蟒python全栈开发-第11阶段 devops-git&&openpyxl2
大纲 1.git分支 2.git tag 3.git 忽略文件 4.正则表达式 5.openpyxl写数据 6.openpyxl读数据 1.git分支 2.git tag 3.git 忽略文件 4.正 ...