题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=68553#problem/B

题目要求:

Wavio是一个整数序列,具有以下特性:

1、Wavio序列的长度是奇数, 即 L = 2 * n + 1;

2、Wavio序列前 n+1 个整数是递增序列

3、Wavio序列后 n+1 个整数是递减序列

如示例 1 2 3 4 5 4 3 2 1 10

最长的 Wavio序列 为 1 2 3 4 5 4 3 2 1 ,所以答案为9

题目解析:

这题做了一中午,第一次做完之后果断TLE了,第一次的做法是对于序列(1,n)暴力求解,先求出a[i]的最长子序列,再求以a[i]为开始的最长递减序列,注意求递增递减

的二分的边界写法。这时候遍历一遍max(min(a[i]的最长,a[i]的最短)*2-1),即为所求结果,不幸直接TLE了。

之后一想,可以先求出这个序列的最长子序列,并记录每一个数最长子序列。

同理,再倒序求出序列的最长子序列,并记录每一个数最长子序列。

这时候在遍历一遍每个数,结果即为max(min(a[i]的最长增长子序列,a[i]的最长递减子序列)*2-1);理由不言而喻。

A了一中午,值得纪念。

AC的:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
int n,a[],d[],w[],ad[],ad2[],sum,len,l2;
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int main()
{
int we;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
sum=;
len=;
d[len]=a[];
ad[]=;
for(int i=; i<=n; i++)
{
if(a[i]>d[len])
{
d[++len]=a[i];
ad[i]=len;
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
ad[i]=we;
}
}
l2=;
w[l2]=a[n];
ad2[n]=;
for(int i=n-; i>=; i--)
{
if(a[i]>w[l2])
{
w[++l2]=a[i];
ad2[i]=l2;
}
else
{
we=er(w,,l2,a[i]);
w[we]=a[i];
ad2[i]=we;
}
}
for(int i=;i<=n;i++)
{
sum=max(sum,(min(ad[i],ad2[i])*-));
}
printf("%d\n",sum);
}
return ;
}

TLE的:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
int n,a[],d[],w[],sum,len,l2;
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int er2(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
l=mid+;
}
else r=mid-;
}
return l;
}
int main()
{
int we,wei;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
sum=;
len=;
d[len]=a[];
for(int i=; i<=n; i++)
{
if(a[i]>d[len])
{
d[++len]=a[i];
l2=;
w[l2]=a[i];
for(int j=i+; j<=n; j++)
{
if(a[j]<w[l2])
{
w[++l2]=a[j];
if(l2==len)
{
break;
}
}
else
{
wei=er2(w,,l2,a[j]);
w[wei]=a[j];
}
}
if(l2<=len) sum=max(sum,(*l2-));
//printf("sum==%d\n",sum);
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
if(len<=) continue;
l2=;
w[l2]=a[i];
for(int j=i+; j<=n; j++)
{
if(a[j]<w[l2])
{
w[++l2]=a[j];
if(l2==we)
{
break;
}
}
else
{
wei=er2(w,,l2,a[j]);
w[wei]=a[j];
}
}
if(l2<=we) sum=max(sum,(*l2-));
//printf("sum==%d\n",sum);
}
}
printf("%d\n",sum);
}
return ;
}

UVA10534:Wavio Sequence(最长递增和递减序列 n*logn)(LIS)好题的更多相关文章

  1. UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence  Wavio is a sequence of integers. It has some interesting properties. ·  Wavio is of ...

  2. UVa10534 - Wavio Sequence(LIS)

    题目大意 给定一个长度为n的整数序列,求个最长子序列(不一定连续),使得该序列的长度为奇数2k+1,前k+1个数严格递增,后k+1个数严格递减.注意,严格递增意味着该序列中的两个相邻数不能相同.n&l ...

  3. Longest Increasing Subsequences(最长递增子序列)的两种DP实现

    一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn).     二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...

  4. Luogu 3402 最长公共子序列(二分,最长递增子序列)

    Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...

  5. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  6. HOJ 2985 Wavio Sequence(最长递增子序列以及其O(n*logn)算法)

    Wavio Sequence My Tags (Edit) Source : UVA Time limit : 1 sec Memory limit : 32 M Submitted : 296, A ...

  7. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  8. COGS731 [网络流24题] 最长递增子序列(最大流)

    给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...

  9. POJ 2533 Longest Ordered Subsequence 最长递增序列

      Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

随机推荐

  1. C语言错误: CRT detected that the application wrote to memory after end of heap buffer

    CRT detected that the application wrote to memory after end of heap buffer 多是中间对其进行了一些操作,在程序结束处,释放内存 ...

  2. Elasticsearch JVM Heap Size大于32G,有什么影响?

    0.引言 在规划ES部署的时候,会涉及到data node的分配堆内存大小,而Elasticsearch默认安装后设置的内存是1GB,对于任何一个业务部署来说,这个都太小了. 设置Heap Size的 ...

  3. jqgrid demo

    本人是用php写的,相信只要稍微用点时间看本人写的,就一定能看懂 前台代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//E ...

  4. pychram最新注册码

    2016年的激活码只能用到2017.2.25,于昨日已经过期了. 现提供最新激活码: BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUczQ0xJSzZGIiwibGljZW5zZW ...

  5. linux 远端执行shell脚本 批量结束各个远端节点进程

    #以下是一个本地的shell脚本,用于同时重启远端多台服务器tomcat服务 #!/bin/sh# ancyshi 重新启动节点tomcat服务function restartNodeTomcatSe ...

  6. 判断asp.net中session过期方法的比较

    重写继承page的OnInit()虚方法,在需要的界面上,继承这个类. 1.新建继承page类的类JudgeSession,实现接口成员. 2.重写OnInit()方法,判断session情况. 3. ...

  7. Laravel5.1 表单验证

    当我们提交表单时 通常会对提交过来的数据进行一些验证.Laravel在Controller类中使用了一个traint:ValidatesRequest.方便我们在控制器中使用验证器. 下面我们就来看一 ...

  8. mysql5.5的安装配置

    1.wget http://120.52.72.23/cdn.mysql.com/c3pr90ntc0td//Downloads/MySQL-5.5/mysql-5.5.50-linux2.6-x86 ...

  9. Java知识点梳理——集合

    1.定义:Java集合类存放于java.util包,是存放对象的容器,长度可变,只能存放对象,可以存放不同的数据类型: 2.常用集合接口: a.Collection接口:最基本的集合接口,存储不唯一, ...

  10. Json数组基础知识

    1.对象是一个无序的“‘名称/值’对”集合. (1)一个对象以“{”(左括号)开始,“}”(右括号)结束. (2)每个“名称”后跟一个“:”(冒号): (3)“‘名称/值’ 对”之间使用“,”(逗号) ...