传送门

Description

给你一个环,环上有一些点,点有点权。定义环上两点能相互看见当且仅当两点间存在一个弧使得弧上不存在一个点的点权大于着两个点。求一共有多少个点能互相看到

Input

第一行 一个整数\(n\)代表环上点的个数

第二行\(n\)个数代表环上每个点的点权

Output

一个数代表答案

Hint

\(For~All:\)

\(3~\leq~n~\leq~10^6\)

Solution

考虑到两个点的贡献只会被计算一次,我们不妨令权值较小的点贡献答案。

先考虑在链上怎么做

显然对于点\(i\),点\(j\)能对他贡献答案的必要条件是\(i\)到\(j\)之间没有点比\(i\)大,然后考虑显然能对\(i\)贡献答案的是没有比点\(i\)大的区间中的后缀\(\max\)。于是这个后缀\(\max\)显然可以单调栈维护一波。

考虑在环上的做法。

发现如果把最大的点提到前面,那么计算出的答案显然除了最大的点以外都是合法的。考虑对最大的点,缺少的答案是最大点前面的后缀最大值。于是就从链尾向链头扫一遍,加上后缀最大值。需要注意的是如果一个点已经作为之前的后缀max贡献了答案的话,那么这个点的贡献就不能计算了。

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template<typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template<typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxn = 1000010; struct M {
int a,b;
};
M stack[maxn]; int n,top;
int MU[maxn],CU[maxn];
bool used[maxn]; int main() {
qr(n);
for(rg int i=1;i<=n;++i) qr(MU[i]);
rg int mx=0;
for(rg int i=1;i<=n;++i) if(MU[i] > MU[mx]) mx=i;
for(rg int i=mx;i<=n;++i) CU[++top]=MU[i];
for(rg int i=1;i<mx;++i) CU[++top]=MU[i];
mx=0;
rg ll ans=0;
stack[top=1]=(M){CU[1],1};
for(rg int i=2;i<=n;++i) {
while(top && (stack[top].a < CU[i])) ans+=stack[top--].b;
if(stack[top].a == CU[i]) ans+=(stack[top].b++)+(top > 1);
else {stack[++top]=(M){CU[i],1}; ++ans;}
}
mx=0;for(rg int i=2;i<=n;++i) if(CU[i] >= mx) {mx=CU[i];used[i]=true;}
mx=0;for(rg int i=n;i>1;--i) if(CU[i] >= mx) {if(!used[i]) ++ans;mx=CU[i];}
qw(ans,'\n',true);
return 0;
}

【单调栈】【CF5E】 Bindian Signalizing的更多相关文章

  1. CF5E Bindian Signalizing

    题目 这题目是真的很水,洛谷给他紫题也差不多算恶意评分了吧233 这种一眼切的题改了很长时间,不是什么n-1搞错,就是什么and打成or,所以写这篇博客给自己长个记性QWQ 题意:n座山组成一个环,相 ...

  2. 「CF5E」Bindian Signalizing

    传送门 Luogu 解题思路 很显然的一点,任何一条可能成为路径的圆弧都不可能经过最高的点,除非这条路径全是最高点. 所以我们先把最大值抠掉,把剩下的按原来的顺序排好. 从前往后.从后往前扫两次,用单 ...

  3. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  4. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  5. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  6. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  7. bzoj1510: [POI2006]Kra-The Disks(单调栈)

    这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...

  8. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  9. 洛谷U4859matrix[单调栈]

    题目描述 给一个元素均为正整数的矩阵,上升矩阵的定义为矩阵中每行.每列都是严格递增的. 求给定矩阵中上升子矩阵的数量. 输入输出格式 输入格式: 第一行两个正整数n.m,表示矩阵的行数.列数. 接下来 ...

随机推荐

  1. 【Jmeter测试】BeanShell介绍和使用

      BeanShell是什么? BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言: BeanShell是用Jav ...

  2. clean code(一)

    代码整洁之道对于程序的重构及可读性至关重要.开始整洁之道吧!!! 一.抽离try catch 模块 public void delete(Page page){ try { deletePageAnd ...

  3. MSCOCO - COCO API 的安装

    在 Windows 下安装 COCO API 的方法. 使用 pip 命令进行安装: pip install git+https://github.com/philferriere/cocoapi.g ...

  4. 亮眼的购物季数据,高涨的 Amazon Prime

    依照往年的惯例,亚马逊公布了 2013 购物季的销售数据.据 The Verge 的报道,今年,仅仅网购星期一(Cyber Monday)一天就在全球范围内销售出 3680 万件商品,而去年这一数字为 ...

  5. 使用 Sublime Text 做 Javascript 编辑器 - 集成 JSHint 问题检测工具

    JSHint(jshint.com)是 Javascritp 代码质量工具,可以帮助开发人员发现 Javascript 代码中的错误和潜在的问题.jshint.com 是一个在线编辑器,我们可以为 S ...

  6. Windows下使用WinRAR命令自动备份文件

    最近有一个需求:为了防止数据丢失,每天对固定文件夹下的文件进行打包压缩备份. 解决办法:使用Windows的任务计划程序,每天执行一下压缩命令: Windows任务计划程序在这里就不再介绍了,网上有很 ...

  7. "firstday"-软件工程

    阅读以下文章 http://www.thea.cn/news/terminal/9/9389.html    http://www.shzhidao.cn/system/2015/09/22/0102 ...

  8. Scrum冲刺博客汇总

    第一篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p/8886296.html 第二篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p ...

  9. request内置对象在JSP

  10. (十一)Jmeter另一种调试工具 HTTP Mirror Server

    之前我介绍过Jmeter的一种调试工具Debug Sampler,它可以输出Jmeter的变量.属性甚至是系统属性而不用发送真实的请求到服务器.既然这样,那么HTTP Mirror Server又是做 ...