2017-09-22 21:56:08

The shorter, the simpler. With this problem, you should be convinced of this truth. 
   
  You are given an array AA of NN postive integers, and MM queries in the form (l,r)(l,r). A function F(l,r) (1≤l≤r≤N)F(l,r) (1≤l≤r≤N) is defined as: 
F(l,r)={AlF(l,r−1) modArl=r;l<r.F(l,r)={All=r;F(l,r−1) modArl<r. 
You job is to calculate F(l,r)F(l,r), for each query (l,r)(l,r).

InputThere are multiple test cases. 
   
  The first line of input contains a integer TT, indicating number of test cases, and TT test cases follow. 
   
  For each test case, the first line contains an integer N(1≤N≤100000)N(1≤N≤100000). 
  The second line contains NN space-separated positive integers: A1,…,AN (0≤Ai≤109)A1,…,AN (0≤Ai≤109). 
  The third line contains an integer MM denoting the number of queries. 
  The following MM lines each contain two integers l,r (1≤l≤r≤N)l,r (1≤l≤r≤N), representing a query.

OutputFor each query(l,r)(l,r), output F(l,r)F(l,r) on one line.Sample Input

1
3
2 3 3
1
1 3

Sample Output

2

代码如下:
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<stdio.h> using namespace std; #define MAXN 100010 int a[MAXN],nex[MAXN]; int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i,j,n,m;
scanf("%d",&n);
for(i = ; i<=n; ++i)
{
scanf("%d",&a[i]);
}
for(i = ;i<=n;++i)
{
nex[i] = -;
for(j = i+;j<=n;++j)
{
if(a[j]<=a[i])
{
nex[i] = j;
break;
}
}
}
scanf("%d",&m);
for(i = ;i<m;++i)
{
int l,r;
scanf("%d%d",&l,&r);
int num = a[l];
for(j = nex[l];j<=r;j = nex[j])
{
if(j == -)
{
break;
}
num%=a[j];
}
printf("%d\n",num);
}
}
return ;
}

连续取模-function的更多相关文章

  1. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  2. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  3. Mycat 分片规则详解--范围取模分片

    实现方式:该算法先进行范围分片,计算出分片组,组内在取模 优点:综合了范围分片和取模分片的优点,分片组内使用取模可以保证组内的数据分布比较均匀,分片组之间采用范围分片可以兼顾范围分片的特点,事先规划好 ...

  4. Mycat 分片规则详解--取模分片

    实现方式:切分规则根据配置中输入的数值n.此种分片规则将数据分成n份(通常dn节点也为n),从而将数据均匀的分布于各节点上. 优点:这种策略可以很好的分散数据库写的压力.比较适合于单点查询的情景 缺点 ...

  5. poj 2065 高斯消元(取模的方程组)

    SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description ...

  6. 【BZOJ4944】【NOI2017】泳池 概率DP 常系数线性递推 特征多项式 多项式取模

    题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格 ...

  7. BZOJ 1008: [HNOI2008]越狱-快速幂/取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  8. hdu 5109(构造数+对取模的理解程度)

    Alexandra and A*B Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  9. 快速幂取模(当数很大时,相乘long long也会超出的解决办法)

    当几个数连续乘最后取模时,可以将每个数字先取模,最后再取模,即%对于*具有结合律.但是如果当用来取模的数本身就很大,采取上述方法就不行了.这个时候可以借鉴快速幂取模的方法,来达到大数相乘取模的效果. ...

随机推荐

  1. flask中的blueprint

    https://blog.csdn.net/sunhuaqiang1/article/details/72803336

  2. SqlServer SqlBulkCopy批量插入 -- 多张表同时插入(事务)

    这段时间在解决一个多个表需要同时插入大量数据的问题,于是在网上找了下,查到说用SqlBulkCopy效率很高,实验后确实很快,10万条数据只要4秒钟,用ef要用40秒.但是我的还需两张表同时插入,且需 ...

  3. Websocket - Websocket原理(握手、解密、加密)、基于Python实现简单示例

    一.Websocket原理(握手.解密.加密) WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实 ...

  4. 1.如何在虚拟机ubuntu上安装hadoop多节点分布式集群

    要想深入的学习hadoop数据分析技术,首要的任务是必须要将hadoop集群环境搭建起来,可以将hadoop简化地想象成一个小软件,通过在各个物理节点上安装这个小软件,然后将其运行起来,就是一个had ...

  5. java 多线程 day15 CyclicBarrier 路障

    import java.util.concurrent.CyclicBarrier;import java.util.concurrent.ExecutorService;import java.ut ...

  6. java 多线程 day11 lock

    import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock; /** * Create ...

  7. POJ1836:Alignment(LIS的应用)

    题目链接:http://poj.org/problem?id=1836 题目要求: 给你n个数,判断最少去掉多少个数,从中间往左是递减的序列,往右是递增的序列 需注意的是中间可能为两个相同的值,如 1 ...

  8. macOS Sierra上Opencv的安装与使用

    安装cmake brew install cmake 安装OpenCV brew install opencv //opencv升级 # brew upgrade opencv 配置OpenCV环境: ...

  9. IOS 此时无法安装XXX

    背景介绍 替一家公司做了企业APP,由于经常需要更新,考虑到上传到APP Store的审核过程,所以当初选定了是用企业证书发布,然后通过网页自动跳转下载APP. 事情原委 昨天下午突然接到客户反馈,I ...

  10. 如何获知PHP程序占用多少内存(复制)

    想要知道编写的 PHP 脚本需要占用多少内存么?很简单,直接使用 PHP 查看当前分配给 PHP 脚本的内存的函数 memory_get_usage() 就可以了 下面是使用示例: 复制代码 代码如下 ...