连续取模-function
2017-09-22 21:56:08
You are given an array AA of NN postive integers, and MM queries in the form (l,r)(l,r). A function F(l,r) (1≤l≤r≤N)F(l,r) (1≤l≤r≤N) is defined as:
F(l,r)={AlF(l,r−1) modArl=r;l<r.F(l,r)={All=r;F(l,r−1) modArl<r.
You job is to calculate F(l,r)F(l,r), for each query (l,r)(l,r).
InputThere are multiple test cases.
The first line of input contains a integer TT, indicating number of test cases, and TT test cases follow.
For each test case, the first line contains an integer N(1≤N≤100000)N(1≤N≤100000).
The second line contains NN space-separated positive integers: A1,…,AN (0≤Ai≤109)A1,…,AN (0≤Ai≤109).
The third line contains an integer MM denoting the number of queries.
The following MM lines each contain two integers l,r (1≤l≤r≤N)l,r (1≤l≤r≤N), representing a query.
OutputFor each query(l,r)(l,r), output F(l,r)F(l,r) on one line.Sample Input
1
3
2 3 3
1
1 3
Sample Output
2 代码如下:
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<stdio.h> using namespace std; #define MAXN 100010 int a[MAXN],nex[MAXN]; int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i,j,n,m;
scanf("%d",&n);
for(i = ; i<=n; ++i)
{
scanf("%d",&a[i]);
}
for(i = ;i<=n;++i)
{
nex[i] = -;
for(j = i+;j<=n;++j)
{
if(a[j]<=a[i])
{
nex[i] = j;
break;
}
}
}
scanf("%d",&m);
for(i = ;i<m;++i)
{
int l,r;
scanf("%d%d",&l,&r);
int num = a[l];
for(j = nex[l];j<=r;j = nex[j])
{
if(j == -)
{
break;
}
num%=a[j];
}
printf("%d\n",num);
}
}
return ;
}
连续取模-function的更多相关文章
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- Mycat 分片规则详解--范围取模分片
实现方式:该算法先进行范围分片,计算出分片组,组内在取模 优点:综合了范围分片和取模分片的优点,分片组内使用取模可以保证组内的数据分布比较均匀,分片组之间采用范围分片可以兼顾范围分片的特点,事先规划好 ...
- Mycat 分片规则详解--取模分片
实现方式:切分规则根据配置中输入的数值n.此种分片规则将数据分成n份(通常dn节点也为n),从而将数据均匀的分布于各节点上. 优点:这种策略可以很好的分散数据库写的压力.比较适合于单点查询的情景 缺点 ...
- poj 2065 高斯消元(取模的方程组)
SETI Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1735 Accepted: 1085 Description ...
- 【BZOJ4944】【NOI2017】泳池 概率DP 常系数线性递推 特征多项式 多项式取模
题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格 ...
- BZOJ 1008: [HNOI2008]越狱-快速幂/取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- hdu 5109(构造数+对取模的理解程度)
Alexandra and A*B Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- 快速幂取模(当数很大时,相乘long long也会超出的解决办法)
当几个数连续乘最后取模时,可以将每个数字先取模,最后再取模,即%对于*具有结合律.但是如果当用来取模的数本身就很大,采取上述方法就不行了.这个时候可以借鉴快速幂取模的方法,来达到大数相乘取模的效果. ...
随机推荐
- flask中的blueprint
https://blog.csdn.net/sunhuaqiang1/article/details/72803336
- SqlServer SqlBulkCopy批量插入 -- 多张表同时插入(事务)
这段时间在解决一个多个表需要同时插入大量数据的问题,于是在网上找了下,查到说用SqlBulkCopy效率很高,实验后确实很快,10万条数据只要4秒钟,用ef要用40秒.但是我的还需两张表同时插入,且需 ...
- Websocket - Websocket原理(握手、解密、加密)、基于Python实现简单示例
一.Websocket原理(握手.解密.加密) WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实 ...
- 1.如何在虚拟机ubuntu上安装hadoop多节点分布式集群
要想深入的学习hadoop数据分析技术,首要的任务是必须要将hadoop集群环境搭建起来,可以将hadoop简化地想象成一个小软件,通过在各个物理节点上安装这个小软件,然后将其运行起来,就是一个had ...
- java 多线程 day15 CyclicBarrier 路障
import java.util.concurrent.CyclicBarrier;import java.util.concurrent.ExecutorService;import java.ut ...
- java 多线程 day11 lock
import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock; /** * Create ...
- POJ1836:Alignment(LIS的应用)
题目链接:http://poj.org/problem?id=1836 题目要求: 给你n个数,判断最少去掉多少个数,从中间往左是递减的序列,往右是递增的序列 需注意的是中间可能为两个相同的值,如 1 ...
- macOS Sierra上Opencv的安装与使用
安装cmake brew install cmake 安装OpenCV brew install opencv //opencv升级 # brew upgrade opencv 配置OpenCV环境: ...
- IOS 此时无法安装XXX
背景介绍 替一家公司做了企业APP,由于经常需要更新,考虑到上传到APP Store的审核过程,所以当初选定了是用企业证书发布,然后通过网页自动跳转下载APP. 事情原委 昨天下午突然接到客户反馈,I ...
- 如何获知PHP程序占用多少内存(复制)
想要知道编写的 PHP 脚本需要占用多少内存么?很简单,直接使用 PHP 查看当前分配给 PHP 脚本的内存的函数 memory_get_usage() 就可以了 下面是使用示例: 复制代码 代码如下 ...