mathematical method

曲线拟合

  • 指数 \(lnY = lna + bX\)
  • 对数 \(Y = blnX + a\)
  • 幂函数 \(lgY=lga+blgX\)

多元线性回归模型

  • 回归分析中有两个或者两个以上的自变量,就是多元回归
  • 最小化残差平方和 SSE

图论: Floyd

#include <iostream>

using namespace std;

const int maxn = 200;

int n,s,t;
int a[maxn+1][maxn+1]; void init()
{
int m,u,v;
cin >> n >> m;
for(int i =1; i<=n; i++)
for(int j =1; j<=n; j++)
a[i][j] = -1;
for(int i = 1; i<=m; i++)
cin >> u >> v >> a[u][v];
cin >> s >> t;
} void floyd()
{
int i,j,k;
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
if(a[i][k]!=-1&&a[k][j]!=-1)
a[i][j] = min(a[i][j],a[i][k]+a[k][j]);
}
} int main()
{
init();
floyd();
cout << a[s][t]+a[t][s]<<endl;
return 0;
}

图论: Prim 算法

  • 解决最小生成树问题
  • 采用的方法是加点法
  • 在所有加过的点中找到距离其他点最短路径的点&&不能构成回路,加入集合,
//这里使用无向图
#include <iostream> using namespace std; const int MAXN = 2001;
const int INF = 99999999; int n,e;
int w[MAXN][MAXN];
int mincount[MAXN]; //从初始顶点到该顶点的最小权值 void init()
{
int i,j;
int tx,ty;
for(i = 0; i<=MAXN; i++)
for(j =0; j<MAXN; j++)
w[i][j] = INF; cin >> n >> e; for(i = 1; i<=e; i++)
{
cin >> tx >> ty >> w[tx][ty];
w[ty][tx] = w[tx][ty];
}
} void prim(int s) //从标号为s处开始生成树
{
int i,j,cnt = 0,min; // cnt 是生成树所有边的权值之和
int k;
for(i = 1; i<= n; i++)
mincount[i] = w[s][i]; // 初始化,设w[1][i]是初始点k到i的最小权值,如果没有就设为INF
mincount[s] = 0; for(i = 1; i < n; i++) //一共有n-1次
{
min = INF;
for(j = 1; j <= n; j++)
{
if(mincount[j]!=0 && mincount[j]<min)
{
min = mincount[j];
k = j; //记录该点
}
mincount[k] = 0;//将该点加入到最小生成树中
cnt += min; //将这条边权值加入到最小生成树中 for(j = 1;j<=n;j++) //修正初始点到每个点的最小权值
{
if(w[k][j]<mincount[j])
mincount[j] = w[k][j];
}
}
}
cout << cnt << endl;
} int main()
{
init();
prim(1);
return 0;
}

图论: Kruskal算法 - 加边法

  • 主要用到的是并查集
#include <iostream>

using namespace std;

const int MAXN = 2000;
const int INF = 99999999;
int n,e;// n是点的数量,e是边的数量
int x[MAXN],y[MAXN],w[MAXN];
int parent[MAXN]; int Find(int x)
{
if(parent[x] == x)
return x;
else
return parent[x] = Find(parent[x]);
} void Merge(int a,int b)
{
int pa = Find(a);
int pb = Find(b);
if(pb < pa)
swap(pb,pa);
if(pa!=pb)
parent[pa] = pb;
} void kruskal()
{
int i,p,ans; //p是已经加入的边数,ans是加入边的边权之和 for(i = 1; i<=n ; i++) //initialize
{
parent[i] = i;
} p = 1;
ans = 0; for(i = 1; i <= e; i++)
{
if(Find(x[i])!=Find(y[i]))// 两点没有在同一个集合中,归并两个集合
{
ans += w[i];
Merge(x[i],y[i]);
p++;
if(p == n) //这里不是n-1,因为初始化的时候,p = 1
{
cout << ans << endl;
return;
}
}
}
return;
} void sort(int i, int j)
{
if(i >=j)
return;
int m,n,k;
m = i;
n = j;
k = w[(i+j)>>1];
while(m <= n)
{
while(w[m]<k)
m++;
while(w[n]>k)
n--;
if(m <= n)
{
swap(x[m],x[n]);
swap(y[m],y[n]);
swap(w[m],w[n]);
m++;
n--;
}
}
sort(i,n);
sort(m,j);
} int main()
{
int i,j;
cin >> n >> e;
for(i = 1; i <= e ; i++)
{
cin >> x[i] >> y[i] >> w[i];
}
sort(1,e);
kruskal();
return 0;
}

最大流 - Ford fulkerson算法

残余网络 & 增广路径

Ford-Fulkerson方法的正确性依赖于这个定理:当残存网络中不存在一条从s到t的增广路径,那么该图已经达到最大流。

伪代码

Ford-Fulkerson
for <u,v> ∈ E
<u,v>.f = 0
while find a route from s to t in e
m = min(<u,v>.f, <u,v> ∈ route)
for <u,v> ∈ route
if <u,v> ∈ f
<u,v>.f = <u,v>.f + m
else
<v,u>.f = <v,u>.f - m

实现过程中的重点自傲与如何寻找增广路径

  • 可以使用广度搜索
  • 可以用Bellmanford算法进行计算
  • 残存网络就是在流网络的基础上改变的,容量仍然保持不变,只改变已经用过的容量.将其反向如果流量为0那就不用再表示在图上了
#include<stdio.h>
#include<stdlib.h>
#include<vector>
#include<algorithm> #define MAXVEX 100
#define INF 65535 //用于表示边的结构体
struct edge
{
int to;//终点
int cap;//容量
int rev;//反向边
};
std::vector<edge>G[MAXVEX];//图的邻接表表示
bool used[MAXVEX];//DFS中用到的访问标记 //向图中增加一条从s到t容量为cap的边
void addEdge(int from, int to, int cap)
{
edge e;
e.cap = cap;e.to = to;e.rev = G[to].size();
G[from].push_back(e);
e.to = from; e.cap = 0; e.rev = G[from].size() - 1;
G[to].push_back(e);
} //通过DFS寻找增广路
int dfs(int v, int t, int f)
{
if (v == t)return f;
used[v] = true;
for (int i = 0; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (!used[e.to] && e.cap > 0)
{
int d = dfs(e.to, t, std::min(f, e.cap));
if (d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
} //求解从s到t的最大流
int max_flow(int s, int t)
{
int flow = 0;
for (;;)
{
memset(used, 0, sizeof(used));
int f = dfs(s, t, INF);
if (f == 0)return flow;
flow += f;
}
}

mathematical method的更多相关文章

  1. 书单BookList

    1. <代码大全> 史蒂夫·迈克康奈尔 (Code Complete) 2. <程序员修炼之道> Andrew Hunt [读过了,非常好的一本书] (Pragmatic Pr ...

  2. itextsharp-5.2.1-修正无法签名大文件问题

    PDF文件格式几乎是所有开发平台或者业务系统都热爱的一种文档格式. 目前有很多优秀的开源PDF组件和类库.主要平时是使用.NET和Java开发,所以比较偏好使用iText,当然,它本身就很强大.iTe ...

  3. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  4. Mathematical optimization数学上的最优化

    https://en.wikipedia.org/wiki/Mathematical_optimization In mathematics, computer science and operati ...

  5. Hypervisor, computer system, and virtual processor scheduling method

    A hypervisor calculates the total number of processor cycles (the number of processor cycles of one ...

  6. Method for finding shortest path to destination in traffic network using Dijkstra algorithm or Floyd-warshall algorithm

    A method is presented for finding a shortest path from a starting place to a destination place in a ...

  7. stacking method house price in kaggle top10%

    整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...

  8. 算法名称 Alias Method

    public class AliasMethod { /* The probability and alias tables. */ private int[] _alias; private dou ...

  9. Image Processing and Analysis_15_Image Registration:HAIRIS: A Method for Automatic Image Registration Through Histogram-Based Image Segmentation——2011

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. 小程序 当button遇上Flex布局

    当需要将button按行排列,当超过一行时,可以换行,从左到右排列,想实现如下效果(实现的比较粗糙,能说明问题就行,呵~~~): 使用Flex布局,在设置主轴方向上对齐方式,使用justify-con ...

  2. 剑指Offer——按之字形顺序打印二叉树

    题目描述: 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 分析: 我们都知道二叉树的层次遍历用的是队 ...

  3. 剑指Offer——数组中的逆序对

    题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%100 ...

  4. 剑指Offer——连续子数组的最大和

    题目描述: HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向 ...

  5. centos7修改hostname和hosts

    1.修改/etc/hostname vi /etc/hostname 打开之后的内容是: localhost.localdomain 把它修改成想要的名字就可以,比如:master 保存退出 2.修改 ...

  6. Python并行编程(二):基于线程的并行

    1.介绍 软件应用中使用最广泛的并行编程范例是多线程.通常一个应用有一个进程,分成多个独立的线程,并行运行.互相配合,执行不同类型的任务. 线程是独立的处理流程,可以和系统的其他线程并行或并发地执行. ...

  7. 006-Shell printf 命令

    一.概述 printf 命令模仿 C 程序库(library)里的 printf() 程序. printf 由 POSIX 标准所定义,因此使用 printf 的脚本比使用 echo 移植性好. pr ...

  8. java-mybaits-00503-延迟加载

    1.什么是延迟加载 resultMap可以实现高级映射(使用association.collection实现一对一及一对多映射),association.collection具备延迟加载功能. 需求: ...

  9. mysql构建一张百万级别数据的表信息测试

    表信息: CREATE TABLE dept( /*部门表*/ deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, /*编号*/ dname VARCHAR(2 ...

  10. @FindBy、@FindBys、@FindAll的区别

    原文地址http://blog.csdn.net/tea_wu/article/details/21080789 selenium-webdriver中获取页面元素的方式有很多,使用注解获取页面元素是 ...