mathematical method

曲线拟合

  • 指数 \(lnY = lna + bX\)
  • 对数 \(Y = blnX + a\)
  • 幂函数 \(lgY=lga+blgX\)

多元线性回归模型

  • 回归分析中有两个或者两个以上的自变量,就是多元回归
  • 最小化残差平方和 SSE

图论: Floyd

#include <iostream>

using namespace std;

const int maxn = 200;

int n,s,t;
int a[maxn+1][maxn+1]; void init()
{
int m,u,v;
cin >> n >> m;
for(int i =1; i<=n; i++)
for(int j =1; j<=n; j++)
a[i][j] = -1;
for(int i = 1; i<=m; i++)
cin >> u >> v >> a[u][v];
cin >> s >> t;
} void floyd()
{
int i,j,k;
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
if(a[i][k]!=-1&&a[k][j]!=-1)
a[i][j] = min(a[i][j],a[i][k]+a[k][j]);
}
} int main()
{
init();
floyd();
cout << a[s][t]+a[t][s]<<endl;
return 0;
}

图论: Prim 算法

  • 解决最小生成树问题
  • 采用的方法是加点法
  • 在所有加过的点中找到距离其他点最短路径的点&&不能构成回路,加入集合,
//这里使用无向图
#include <iostream> using namespace std; const int MAXN = 2001;
const int INF = 99999999; int n,e;
int w[MAXN][MAXN];
int mincount[MAXN]; //从初始顶点到该顶点的最小权值 void init()
{
int i,j;
int tx,ty;
for(i = 0; i<=MAXN; i++)
for(j =0; j<MAXN; j++)
w[i][j] = INF; cin >> n >> e; for(i = 1; i<=e; i++)
{
cin >> tx >> ty >> w[tx][ty];
w[ty][tx] = w[tx][ty];
}
} void prim(int s) //从标号为s处开始生成树
{
int i,j,cnt = 0,min; // cnt 是生成树所有边的权值之和
int k;
for(i = 1; i<= n; i++)
mincount[i] = w[s][i]; // 初始化,设w[1][i]是初始点k到i的最小权值,如果没有就设为INF
mincount[s] = 0; for(i = 1; i < n; i++) //一共有n-1次
{
min = INF;
for(j = 1; j <= n; j++)
{
if(mincount[j]!=0 && mincount[j]<min)
{
min = mincount[j];
k = j; //记录该点
}
mincount[k] = 0;//将该点加入到最小生成树中
cnt += min; //将这条边权值加入到最小生成树中 for(j = 1;j<=n;j++) //修正初始点到每个点的最小权值
{
if(w[k][j]<mincount[j])
mincount[j] = w[k][j];
}
}
}
cout << cnt << endl;
} int main()
{
init();
prim(1);
return 0;
}

图论: Kruskal算法 - 加边法

  • 主要用到的是并查集
#include <iostream>

using namespace std;

const int MAXN = 2000;
const int INF = 99999999;
int n,e;// n是点的数量,e是边的数量
int x[MAXN],y[MAXN],w[MAXN];
int parent[MAXN]; int Find(int x)
{
if(parent[x] == x)
return x;
else
return parent[x] = Find(parent[x]);
} void Merge(int a,int b)
{
int pa = Find(a);
int pb = Find(b);
if(pb < pa)
swap(pb,pa);
if(pa!=pb)
parent[pa] = pb;
} void kruskal()
{
int i,p,ans; //p是已经加入的边数,ans是加入边的边权之和 for(i = 1; i<=n ; i++) //initialize
{
parent[i] = i;
} p = 1;
ans = 0; for(i = 1; i <= e; i++)
{
if(Find(x[i])!=Find(y[i]))// 两点没有在同一个集合中,归并两个集合
{
ans += w[i];
Merge(x[i],y[i]);
p++;
if(p == n) //这里不是n-1,因为初始化的时候,p = 1
{
cout << ans << endl;
return;
}
}
}
return;
} void sort(int i, int j)
{
if(i >=j)
return;
int m,n,k;
m = i;
n = j;
k = w[(i+j)>>1];
while(m <= n)
{
while(w[m]<k)
m++;
while(w[n]>k)
n--;
if(m <= n)
{
swap(x[m],x[n]);
swap(y[m],y[n]);
swap(w[m],w[n]);
m++;
n--;
}
}
sort(i,n);
sort(m,j);
} int main()
{
int i,j;
cin >> n >> e;
for(i = 1; i <= e ; i++)
{
cin >> x[i] >> y[i] >> w[i];
}
sort(1,e);
kruskal();
return 0;
}

最大流 - Ford fulkerson算法

残余网络 & 增广路径

Ford-Fulkerson方法的正确性依赖于这个定理:当残存网络中不存在一条从s到t的增广路径,那么该图已经达到最大流。

伪代码

Ford-Fulkerson
for <u,v> ∈ E
<u,v>.f = 0
while find a route from s to t in e
m = min(<u,v>.f, <u,v> ∈ route)
for <u,v> ∈ route
if <u,v> ∈ f
<u,v>.f = <u,v>.f + m
else
<v,u>.f = <v,u>.f - m

实现过程中的重点自傲与如何寻找增广路径

  • 可以使用广度搜索
  • 可以用Bellmanford算法进行计算
  • 残存网络就是在流网络的基础上改变的,容量仍然保持不变,只改变已经用过的容量.将其反向如果流量为0那就不用再表示在图上了
#include<stdio.h>
#include<stdlib.h>
#include<vector>
#include<algorithm> #define MAXVEX 100
#define INF 65535 //用于表示边的结构体
struct edge
{
int to;//终点
int cap;//容量
int rev;//反向边
};
std::vector<edge>G[MAXVEX];//图的邻接表表示
bool used[MAXVEX];//DFS中用到的访问标记 //向图中增加一条从s到t容量为cap的边
void addEdge(int from, int to, int cap)
{
edge e;
e.cap = cap;e.to = to;e.rev = G[to].size();
G[from].push_back(e);
e.to = from; e.cap = 0; e.rev = G[from].size() - 1;
G[to].push_back(e);
} //通过DFS寻找增广路
int dfs(int v, int t, int f)
{
if (v == t)return f;
used[v] = true;
for (int i = 0; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (!used[e.to] && e.cap > 0)
{
int d = dfs(e.to, t, std::min(f, e.cap));
if (d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
} //求解从s到t的最大流
int max_flow(int s, int t)
{
int flow = 0;
for (;;)
{
memset(used, 0, sizeof(used));
int f = dfs(s, t, INF);
if (f == 0)return flow;
flow += f;
}
}

mathematical method的更多相关文章

  1. 书单BookList

    1. <代码大全> 史蒂夫·迈克康奈尔 (Code Complete) 2. <程序员修炼之道> Andrew Hunt [读过了,非常好的一本书] (Pragmatic Pr ...

  2. itextsharp-5.2.1-修正无法签名大文件问题

    PDF文件格式几乎是所有开发平台或者业务系统都热爱的一种文档格式. 目前有很多优秀的开源PDF组件和类库.主要平时是使用.NET和Java开发,所以比较偏好使用iText,当然,它本身就很强大.iTe ...

  3. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  4. Mathematical optimization数学上的最优化

    https://en.wikipedia.org/wiki/Mathematical_optimization In mathematics, computer science and operati ...

  5. Hypervisor, computer system, and virtual processor scheduling method

    A hypervisor calculates the total number of processor cycles (the number of processor cycles of one ...

  6. Method for finding shortest path to destination in traffic network using Dijkstra algorithm or Floyd-warshall algorithm

    A method is presented for finding a shortest path from a starting place to a destination place in a ...

  7. stacking method house price in kaggle top10%

    整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...

  8. 算法名称 Alias Method

    public class AliasMethod { /* The probability and alias tables. */ private int[] _alias; private dou ...

  9. Image Processing and Analysis_15_Image Registration:HAIRIS: A Method for Automatic Image Registration Through Histogram-Based Image Segmentation——2011

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. Macbook pro 13" Installs Ubuntu 18.04

    最新版的 MacBook对Ubuntu的支持(或者反过来?)不是很好,但是除了Suspend和resume功能没找到方法使用外,其他都还好,可用. 1.mac在OSX中先安装refind引导,如果开启 ...

  2. CGI/FastCGI/mod_php工作原理

    先了解一下普通cgi的工作流程:web server收到用户请求,并把请求提交给cgi程序,cgi程序根据请求提交的参数作相应处理,然后输出标准的html语句返回给web server,web ser ...

  3. java中 synchronized 的使用,确保异步执行某一段代码。

    最近看了个有关访问网络url和下载的例子,里面有几个synchronized的地方,系统学习下,以下内容很重要,记下来. Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一 ...

  4. 使用arc进行code review

    https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/ 使用流程: 流程 本部分来自arcanist ...

  5. Python性能优化(转)

    分成两部分:代码优化和工具优化 原文:http://my.oschina.net/xianggao/blog/102600 阅读 Zen of Python,在Python解析器中输入 import ...

  6. Linux时间管理涉及数据结构和传统低分辨率时钟的实现

    上篇文章大致描述了Linux时间管理的基本情况,看了一些大牛们的博客感觉自己写的内容很匮乏,但是没办法,只能通过这种方式提升自己……闲话不说,本节介绍下时间管理下重要的数据结构 设备相关数据结构 // ...

  7. LInux中的物理内存管理

    2017-02-23 一.伙伴系统 LInux下用伙伴系统管理物理内存页,伙伴系统得益于其良好的算法,一定程度上可以避免外部碎片为何这么说?先回顾下Linux下虚拟地址空间的分布. 在X86架构下,系 ...

  8. 【开发者笔记】归并排序过程呈现之java内置GUI表示

    在网上看到一个视频将各种排序用视频表示出来,配上音乐,挺好玩的样子,就算是不会编程的人看到也会觉得很舒服,碰巧我也正在写归并算法,于是就用java的GUI实现一个. 归并排序的时间复杂度是T(n)=O ...

  9. request.getInputStream() 流只能读取一次问题

    问题: 一次开发过程中同事在 sptring interceptor 中获取 request body 中值,以对数据的校验和预处理等操作 .导致之后spring 在读取request body 值做 ...

  10. c++中字符串反转的3种方法

    第一种:使用algorithm中的reverse函数 #include <iostream> #include <string> #include <algorithm& ...