【LOJ#6278】数列分块2
题目大意:分块维护一个有 n 个数字的序列,有两种操作:区间加,区间查询小于某个数的元素个数。n <= 50000
预处理阶段:处理出块内元素的相对大小顺序(排序),时间复杂度为 \(O(nlogn)\)
查询阶段:区间加过程中每次重构的时间复杂度为 \(O(\sqrt n*log\sqrt n)\),查询过程中每次时间复杂度为 \(O(\sqrt n)\),一共 n 次操作。
因此,总时间复杂度为 \(O(n*logn+n*\sqrt n*log\sqrt n)\)
注:该题无法用树套树进行维护,树套树一般仅支持单点修改,平衡树区间修改操作会很慢。
分块比树套树优秀的地方在于维护的信息仅在块中处理即可,无需像树一样进行上传,即:无需考虑维护信息的区间合并性质。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+10;
const int maxb=800;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
int n,m,a[maxn];
struct node{int l,r,add;}b[maxb];
int tot,bl[maxn];vector<int> v[maxb];
void make_block(){
tot=sqrt(n);
for(int i=1;i<=tot;i++)b[i].l=b[i-1].r+1,b[i].r=i*tot;
if(b[tot].r<n)++tot,b[tot].l=b[tot-1].r+1,b[tot].r=n;
for(int i=1;i<=tot;i++){
for(int j=b[i].l;j<=b[i].r;j++)bl[j]=i,v[i].push_back(a[j]);
sort(v[i].begin(),v[i].end());
}
}
inline void rebuild(int idx){
v[idx].clear();
for(int i=b[idx].l;i<=b[idx].r;i++)v[idx].push_back(a[i]);
sort(v[idx].begin(),v[idx].end());
}
void modify(int l,int r,int val){
int x=bl[l],y=bl[r];
if(x==y){
for(int i=l;i<=r;i++)a[i]+=val;
rebuild(x);
}else{
for(int i=x+1;i<=y-1;i++)b[i].add+=val;
for(int i=l;i<=b[x].r;i++)a[i]+=val;
for(int i=b[y].l;i<=r;i++)a[i]+=val;
rebuild(x),rebuild(y);
}
}
int query(int l,int r,int val){
int ans=0,x=bl[l],y=bl[r];
if(x==y){
for(int i=l;i<=r;i++)if(a[i]<val-b[x].add)++ans;
}else{
for(int i=x+1;i<=y-1;i++)ans+=lower_bound(v[i].begin(),v[i].end(),val-b[i].add)-v[i].begin();
for(int i=l;i<=b[x].r;i++)if(a[i]<val-b[x].add)++ans;
for(int i=b[y].l;i<=r;i++)if(a[i]<val-b[y].add)++ans;
}
return ans;
}
int main(){
n=m=read();
for(int i=1;i<=n;i++)a[i]=read();
make_block();
while(m--){
int opt=read(),l=read(),r=read(),val=read();
if(opt==0)modify(l,r,val);
else if(opt==1)printf("%d\n",query(l,r,val*val));
}
return 0;
}
【LOJ#6278】数列分块2的更多相关文章
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LOJ#6278. 数列分块入门 2
在一个区间上进行操作,一种操作是某个小区间都加上c,另一个查找这个区间内大于c*c的数 我们可以另外开一个数组在保存a中的每个分块内的相对值,然后每次对a加值,并把a的值赋给b,不同的是b内的各个分块 ...
- LOJ 6278 数列分块入门2
[题解] 分块.块内排序.块内二分出第一个大于等于c的数. #include<cstdio> #include<algorithm> #include<cmath> ...
- LOJ——#6277. 数列分块入门 1
~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...
- #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)
题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...
- LOJ 6277-6280 数列分块入门 1-4
数列分块是莫队分块的前置技能,练习一下 1.loj6277 给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值. 直接分块+tag即可 #include <bits/stdc++.h ...
- LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)
#6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给 ...
- LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)
#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)
#6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)
#6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1 题目描述 给出 ...
随机推荐
- 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构
相关知识:(来自百度百科) LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...
- Centos下PPTP环境部署记录
PPTP(点到点隧道协议)是一种用于让远程用户拨号连接到本地的ISP,通过因特网安全远程访问公司资源的新型技术.它能将PPP(点到点协议)帧封装成IP数据包,以便能够在基于IP的互联网上进行传输.PP ...
- Fedora 19安装mysql
安装数据库模块 Mysql和Mysql-server#yum install mysql mysql-server 开启mysql服务#systemctl start mysqld.service同样 ...
- PAT L2-002 链表去重
https://pintia.cn/problem-sets/994805046380707840/problems/994805072641245184 给定一个带整数键值的链表 L,你需要把其中绝 ...
- Navicat连接mysql备份数据库提示:1577 – Cannot proceed because system tables used by Event Scheduler where found damaged at server start
解决办法,可以参考试试: http://www.cnblogs.com/huangcong/p/3389010.html http://blog.csdn.net/phpfenghuo/article ...
- Java控制台常用命令
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html javaw是java的带console版本,其他一致. h ...
- about use Vue of methods
methods 处理事件 methods 在vue中处理一些逻辑方面的事情.vue事件监听的方式看上去有点违背分离的传统观念.而实际上vue中所有事件的处理方式和表达式都是严格绑定在当前的视图的vie ...
- [转帖]台积电近10万片晶圆报废,但7nm工艺将成2019营收主力
台积电近10万片晶圆报废,但7nm工艺将成2019营收主力 2019年02月18日 13:19 1784 次阅读 稿源:Expreview超能网 0 条评论 https://www.cnbeta.co ...
- ERP启动会
一个信念: 只许成功,不许失败. 二个原则: 第一个原则是“业务为主,IT为辅”的实施原则: 第二个原则是“循序渐进,持续改善”的工作原则. 三点要求: 第一点,各分公司.各部门的负责人要将ERP信息 ...
- WebAssembly是什么?
现在的JavaScript代码要进行性能优化,通常使用一些常规手段,如:延迟执行.预处理.setTimeout等异步方式避免处理主线程,高大上一点的会使用WebWorker.即使对于WebWorker ...