UVA 10480 Sabotage (网络流,最大流,最小割)

Description

The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-lion. Because of the enormous disturbances this is causing in world economy, an imperialist military super power has decided to invade the country and reinstall the old regime.

For this operation to be successful, communication between the capital and the largest city must be completely cut. This is a difficult task, since all cities in the country are connected by a computer network using the Internet Protocol, which allows messages to take any path through the network.

Because of this, the network must be completely split in two parts, with the capital in one part and the largest city in the other, and with no connections between the parts.

There are large differences in the costs of sabotaging different connections, since some are much more easy to get to than others.

Write a program that, given a network speci cation and the costs of sabotaging each connection, determines which connections to cut in order to separate the capital and the largest city to the lowest possible cost

Input

Input file contains several sets of input. The description of each set is given below.

The first line of each set has two integers, separated by a space: First one the number of cities,n in the network, which is at most 50. The second one is the total number of connections, m , at most 500.

The following m lines specify the connections. Each line has three parts separated by spaces: The first two are the cities tied together by that connection (numbers in the range 1-n.Then follows the cost of cutting the connection (an integer in the range 1 to 40000000). Each pair of cites can appear at most once in this list

Input is terminated by a case where values of n and m are zero. This case should not be processed. For every input set the capital is city number 1, and the largest city is number 2.

Output

For each set of input you should produce several lines of output. The description of output for each set of input is given below:

The output for each set should be the pairs of cities (i.e. numbers) between which the connection should be cut (in any order), each pair on one line with the numbers separated by a space. If there is more than one solution, any one of them will do.

Print a blank line after the output for each set of input

Sample Input

5 8

1 4 30

1 3 70

5 3 20

4 3 5

4 5 15

5 2 10

3 2 25

2 4 50

5 8

1 4 30

1 3 70

5 3 20

4 3 5

4 5 15

5 2 10

3 2 25

2 4 50

0 0

Sample Output

4 1

3 4

3 5

3 2

4 1

3 4

3 5

3 2

Http

https://vjudge.net/problem/UVA-10480

Source

网络流,最大流,最小割

题目大意

在给定的无向图中,割去权值和最小的边使得1和2不连通

解决思路

根据最小割最大流定理,最大流即为最小割。所以本题的最小割是可以很快求出来的,关键是如何输出割去哪些边。

因为在执行完最大流算法后,剩下的残量网络图是把S和T割开的,图中的点组成S和T两个集合,所以可以用一遍dfs求出与S在同一边的点,然后从这些点出发,寻找与其相连的不与S相连的点,即跨越了集合S和集合T的边,这些边就是要割掉的。

这里使用Dinic算法实现最大流,可以参考这篇文章

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=60;
const int maxM=2000;
const int inf=2147483647; class Edge
{
public:
int u,v,flow;
bool edge;
}; int n,m;
int cnt;
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int depth[maxN];
int cur[maxN];
int Q[maxM];
bool is_outp[maxN][maxN];
bool setS[maxN]; void Add_Edge(int u,int v,int flow);
bool bfs();
int dfs(int u,int flow);
void outp(int u); int main()
{
bool op=0;//用来标记是否是第一组数据,因为要在每两组数据之间输出一个空行
while (cin>>n>>m)
{
if ((n==0)&&(m==0))
break;
if (op)
printf("\n");
op=1;
cnt=-1;//初始化为-1
memset(Head,-1,sizeof(Head));
for (int i=1;i<=m;i++)
{
int u,w,v;
scanf("%d%d%d",&u,&v,&w);//连边
Add_Edge(u,v,w);
Add_Edge(v,u,w);
}
while (bfs())//求解最大流
{
for (int i=1;i<=n;i++)
cur[i]=Head[i];
while (dfs(1,inf));
}
memset(is_outp,0,sizeof(is_outp));//标记某对点是否已经输出
memset(setS,0,sizeof(setS));//标记某个点是否在集合S中
outp(1);//dfs求在集合S中的点
for (int i=1;i<=n;i++)
if (setS[i]==1)
{
for (int j=Head[i];j!=-1;j=Next[j])//寻找横跨两个集合的边
{
int v=E[j].v;
if ((setS[v]==0)&&(is_outp[i][v]==0))//注意判重
{
printf("%d %d\n",i,v);
is_outp[i][v]=1;
}
}
}
/*
for (int i=0;i<=cnt;i++)
if ((E[i].flow==0)&&(E[i].edge==1))
printf("%d %d\n",E[i].u,E[i].v);
//*/
}
} void Add_Edge(int u,int v,int flow)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].flow=flow;
E[cnt].edge=1; cnt++;
Next[cnt]=Head[v];
Head[v]=cnt;
E[cnt].v=u;
E[cnt].u=v;
E[cnt].flow=0;
E[cnt].edge=0;
} bool bfs()
{
memset(depth,-1,sizeof(depth));
int h=1,t=0;
Q[1]=1;
depth[1]=1;
do
{
t++;
int u=Q[t];
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==-1)&&(E[i].flow>0))
{
depth[v]=depth[u]+1;
h++;
Q[h]=v;
}
}
}
while (h!=t);
if (depth[2]==-1)
return 0;
/*for (int i=1;i<=n;i++)
cout<<depth[i]<<" ";
cout<<endl;
getchar();*/
return 1;
} int dfs(int u,int flow)
{
//cout<<u<<endl;
if (u==2)
return flow;
for (int &i=cur[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==depth[u]+1)&&(E[i].flow>0))
{
//cout<<i<<" "<<u<<' '<<v<<endl;
//cout<<"E:"<<E[i].u<<" "<<E[i].v<<" "<<E[i].flow<<endl;
//getchar();
int di=dfs(v,min(flow,E[i].flow));
if (di>0)
{
E[i].flow-=di;
E[i^1].flow+=di;
return di;
}
}
}
return 0;
} void outp(int u)
{
setS[u]=1;
for (int i=Head[u];i!=-1;i=Next[i])
if ((setS[E[i].v]==0)&&(E[i].flow>0))//注意要流量大于0
outp(E[i].v);
return;
}

UVA 10480 Sabotage (网络流,最大流,最小割)的更多相关文章

  1. 网络流 最大流—最小割 之SAP算法 详解

    首先引入几个新名词: 1.距离标号: 所谓距离标号 ,就是某个点到汇点的最少的弧的数量(即边权值为1时某个点到汇点的最短路径长度). 设点i的标号为level[i],那么如果将满足level[i]=l ...

  2. UVA - 10480 Sabotage【最小割最大流定理】

    题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...

  3. UVA - 10480 Sabotage 最小割,输出割法

    UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...

  4. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  5. UVA 10480 Sabotage (最大流) 最小割边

    题目 题意: 编写一个程序,给定一个网络规范和破坏每个连接的成本,确定要切断哪个连接,以便将首都和最大的城市分离到尽可能低的成本. 分割-------------------------------- ...

  6. Uva 10480 Sabotage 最大流

    表示自从学了网络流,就基本上是一直用dinic 这个题一看就是用最大流,作为常识,两个点之间的最大流等于最小割 但是这个题需要输出割边,然后我就不会了,dinic判流量我觉得也可做,但是一直wa 然后 ...

  7. 「网络流24题」「LuoguP2774」方格取数问题(最大流 最小割

    Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方 ...

  8. UVA 10480 Sabotage (最大流最小割)

    题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...

  9. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

随机推荐

  1. 历时25天,我的博客(www.ityouknow.com)终于又活了过来

    时间回到2016年的7月10号,那时候我刚刚开始正式在博客园写博客,博客园的交流氛围很好,但鉴于博客园古老的界面,同时计划创建一个自己独立的博客,毕竟自己的博客怎么折腾都行. 那时候正在研究 Spri ...

  2. 基于 HTML5 Canvas 的 3D WebGL 机房创建

    对于 3D 机房来说,监控已经不是什么难事,不同的人有不同的做法,今天试着用 HT 写了一个基于 HTML5 的机房,发现果然 HT 简单好用.本例是将灯光.雾化以及 eye 的最大最小距离等等功能在 ...

  3. Linux下rsyslog日志收集服务环境部署记录

    rsyslog 可以理解为多线程增强版的syslog. 在syslog的基础上扩展了很多其他功能,如数据库支持(MySQL.PostgreSQL.Oracle等).日志内容筛选.定义日志格式模板等.目 ...

  4. sheet制作返回按钮

    =HYPERLINK("#目录!A1","目录!A1") =HYPERLINK("#"&A2&"!A1" ...

  5. Individual Project-word frequency

    预计时间: 项目要求理解:半小时 c#语言了解:6小时 构思程序框架:2小时 编写调试程序:4小时 项目实际完成时间: 项目要求理解:半小时 c#语言了解:6小时 构思程序框架:2小时 编写调试程序: ...

  6. Linux内核读书笔记第三周 调试

    内核调试的难点在于它不能像用户态程序调试那样打断点,随时暂停查看各个变量的状态. 也不能像用户态程序那样崩溃后迅速的重启,恢复初始状态. 用户态程序和内核交互,用户态程序的各种状态,错误等可以由内核来 ...

  7. SE Springer小组之《Spring音乐播放器》需求分析说明书一

    软件需求说明书 软件需求说明书的编制是为了使用户和软件开发者双方对该软件的初始规定有一个共同的理解, 使之成为整个开发工作的基础. 1 引言 1.1编写目的 使用户对该软件的初始规定有一个理解,也使软 ...

  8. 关于hash冲突的解决

    分离链接法:public class SeparateChainingHashTable<AnyType>{ private static final int DEFAULT_TABLE_ ...

  9. [2017BUAA软件工程]第0次博客作业

    [2017BUAA软件工程]第0次博客作业 结缘计算机 你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢? 计算机是你喜欢的领域吗?是你擅长的领域吗? 我当时报考高考志愿的时候就已经是想好报 ...

  10. Linux: HowTo See Directory Tree Structure

    https://www.cyberciti.biz/faq/linux-show-directory-structure-command-line/ Linux: HowTo See Director ...