UVA11987 Almost Union-Find
题目描述
输入输出格式
输入格式:
输出格式:
输入输出样例
5 7
1 1 2
2 3 4
1 3 5
3 4
2 4 1
3 4
3 3
3 12
3 7
2 8
Solution:
本题平衡树。
考试的时候想到的就是无旋treap了,正解貌似是并查集(我没想出来,太菜了)。
节点维护子树大小和子树和,开始时每个节点就是一棵treap,因为我们并不要保证有序,所以可以直接按中序遍历维护,合并分离就不需要考虑优先级了。
对于操作一,若不在同一棵树中,直接merge两棵树。
对于操作二,因为随机键值树高为$\log n$,所以直接暴力往上跳到$x$所在树的根,跳的同时求出$x$在该树中的排名,若$x,y$不在同一棵树中,按排名将$x$分离出来,与$y$所在树合并。
对于操作三,直接找到$x$所在树根输出子树大小和子树和就好了。
代码:
/*Code by 520 -- 10.24*/
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,ch[N][],rnd[N],siz[N],date[N],cnt,fa[N],sum[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void newnode(int v){
++cnt;
ch[cnt][]=ch[cnt][]=,sum[cnt]=v;
siz[cnt]=,date[cnt]=v,rnd[cnt]=rand(),fa[cnt]=;
} il void up(int rt){
if(ch[rt][]) fa[ch[rt][]]=rt;
if(ch[rt][]) fa[ch[rt][]]=rt;
siz[rt]=siz[ch[rt][]]+siz[ch[rt][]]+;
sum[rt]=sum[ch[rt][]]+sum[ch[rt][]]+date[rt];
} int merge(int x,int y){
if(!x||!y) return x+y;
if(rnd[x]<rnd[y]) {ch[x][]=merge(ch[x][],y),up(x);return x;}
else {ch[y][]=merge(x,ch[y][]),up(y);return y;}
} void split(int rt,int v,int &x,int &y){
if(!rt) {x=y=;return;}
if(siz[ch[rt][]]>=v) y=rt,split(ch[rt][],v,x,ch[y][]),up(y);
else x=rt,split(ch[rt][],v-siz[ch[rt][]]-,ch[x][],y),up(x);
} int find(int x,int &tot){
if(!fa[x])return x;
if(ch[fa[x]][]==x) tot+=siz[ch[fa[x]][]]+;
return find(fa[x],tot);
} int main(){
srand(time());
while(scanf("%d%d",&n,&m)!=EOF){
cnt=; int opt,a,b,c,x,y,z;
For(i,,n) newnode(i);
while(m--){
opt=gi(),a=gi();
if(opt==){
b=gi();
a=find(a,x=),b=find(b,x=);
if(a!=b) merge(a,b);
}
else if(opt==){ int k=siz[ch[a][]]+;
b=gi();c=find(a,k),b=find(b,opt);
if(c!=b){
x=y=z=;
split(c,k,x,y),split(x,k-,x,z),x=merge(x,y),b=merge(b,z);
fa[x]=,fa[b]=;
}
}
else {
a=find(a,x=);
printf("%d %d\n",siz[a],sum[a]);
}
}
}
return ;
}
UVA11987 Almost Union-Find的更多相关文章
- SQL Server-聚焦UNIOL ALL/UNION查询(二十三)
前言 本节我们来看看有关查询中UNION和UNION ALL的问题,简短的内容,深入的理解,Always to review the basics. 初探UNION和UNION ALL 首先我们过一遍 ...
- SQL 提示介绍 hash/merge/concat union
查询提示一直是个很有争议的东西,因为他影响了sql server 自己选择执行计划.很多人在问是否应该使用查询提示的时候一般会被告知慎用或不要使用...但是个人认为善用提示在不修改语句的条件下,是常用 ...
- LINQ to SQL语句(8)之Concat/Union/Intersect/Except
适用场景:对两个集合的处理,例如追加.合并.取相同项.相交项等等. Concat(连接) 说明:连接不同的集合,不会自动过滤相同项:延迟. 1.简单形式: var q = ( from c in db ...
- SQLServer-----Union,Union All的使用方法
转载: http://blog.csdn.net/kiqinie/article/details/8132485 select a.Name from Material as a union sele ...
- 假如 UNION ALL 里面的子句 有 JOIN ,那个执行更快呢
比如: select id, name from table1 where name = 'x' union all select id, name from table2 where name = ...
- sql union和union all的用法及效率
UNION指令的目的是将两个SQL语句的结果合并起来.从这个角度来看, 我们会产生这样的感觉,UNION跟JOIN似乎有些许类似,因为这两个指令都可以由多个表格中撷取资料. UNION的一个限制是两个 ...
- 【oracle】union、union all、intersect、minus 的用法及区别
一.union与union all 首先建两个view create or replace view test_view_1 as as c from dual union as c from dua ...
- sql with as union all
WITH RPL (FId,Fname,Forder) AS ( SELECT ment.deptno,ment.deptname,ment.orderno FROM JTERP..fg_depart ...
- Oracle 中 union 和union all 的简单使用说明
1.刚刚工作不久,经常接触oracle,但是对oracle很多东西都不是很熟.今天我们来了解一下union和union all的简单使用说明.Union(union all): 指令的目的是将两个 S ...
- LINQ系列:LINQ to SQL Concat/Union
1. Concat 单列Concat var expr = (from p in context.Products select p.ProductName) .Concat( from c in c ...
随机推荐
- ADO.NET的Connection Timeout和Command Timeout (转载)
每次对数据库连接时,我们有时候会碰到连接超时或者命令超时,这两个超时是不一样的.以ADO.NET为例,当客户端和服务器端连接时,碰到的超时情况主要有下面几种:当从连接池获取一个连接时,碰到超时.当建立 ...
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- [Oracle]Master表字段扩张时的对应方法
Master表字段扩张时的对应方法 如果Master表的数据量很大,Master表中的列,宽度扩张了,MVIEW表如何对应处理? 此时,重建MVIEW可能会耗费很长的时间. 可以采用 alter ma ...
- [译]通往 Java 函数式编程的捷径
原文地址:An easier path to functional programming in Java 原文作者:Venkat Subramaniam 译文出自:掘金翻译计划 以声明式的思想在你的 ...
- BugkuCTF 域名解析
前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...
- 金蝶PDA金蝶盘点机金蝶仓库条码管理方案-采购入库单教程
采购入库单有两种做法: 第一种:按照采购订单下推的采购入库单. 第二种:直接新增采购入库单,也就是不按照采购订单下推. 按照采购订单下推生成采购入库单,会以采购订单的商品品种和数量作为应收.扫描条码入 ...
- 编写脚本自动部署反向代理、web、nfs
服务器端 #!/bin/bash function nginx_install(){ if [[ -f /usr/sbin/nginx ]]; then echo 'Nginx has been in ...
- Linux磁盘空间被占用问题 (分区目录占用空间比实际空间要大: 资源文件删除后, 空间没有真正释放)
问题说明:IDC里的一台服务器的/分区使用率爆满了!已达到100%!经查看发现有个文件过大(80G),于是在跟有关同事确认后rm -f果断删除该文件.但是发现删除该文件后,/分区的磁盘空间压根没有释放 ...
- linux及安全第八周总结
进程的调度时机与进程的切换 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已. 对于理解操作系统的工作机制,反而是进程的调 ...
- Linux实践:文件破解
Linux实践:文件破解 标签(空格分隔): 20135321余佳源 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP指令 ...